論文の概要: Unveiling Language Skills under Circuits
- arxiv url: http://arxiv.org/abs/2410.01334v1
- Date: Wed, 2 Oct 2024 08:52:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:49:06.880159
- Title: Unveiling Language Skills under Circuits
- Title(参考訳): サーキットによる言語スキルの解き方
- Authors: Hang Chen, Jiaying Zhu, Xinyu Yang, Wenya Wang,
- Abstract要約: メモリ回路は、言語モデルのメモリ読み取り機能を完全かつ独立に操作する最小単位である。
我々は,3つの重要な言語スキルに責任を負う,スキルパスと命名された有能な回路パスを同定する。
各種データセットに対する実験により,認識されたスキルパスと言語スキルの対応性を確認した。
- 参考スコア(独自算出の注目度): 31.608080868988825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exploration of language skills in language models (LMs) has always been one of the central goals in mechanistic interpretability. However, existing circuit analyses often fall short in representing the full functional scope of these models, primarily due to the exclusion of Feed-Forward layers. Additionally, isolating the effect of a single language skill from a text, which inherently involves multiple entangled skills, poses a significant challenge. To address these gaps, we introduce a novel concept, Memory Circuit, a minimum unit that fully and independently manipulates the memory-reading functionality of a language model, and disentangle the transformer model precisely into a circuit graph which is an ensemble of paths connecting different memory circuits. Based on this disentanglement, we identify salient circuit paths, named as skill paths, responsible for three crucial language skills, i.e., the Previous Token Skill, Induction Skill and In-Context Learning (ICL) Skill, leveraging causal effect estimation through interventions and counterfactuals. Our experiments on various datasets confirm the correspondence between our identified skill paths and language skills, and validate three longstanding hypotheses: 1) Language skills are identifiable through circuit dissection; 2) Simple language skills reside in shallow layers, whereas complex language skills are found in deeper layers; 3) Complex language skills are formed on top of simpler language skills. Our codes are available at: https://github.com/Zodiark-ch/Language-Skill-of-LLMs.
- Abstract(参考訳): 言語モデル(LM)における言語スキルの探索は、機械的解釈可能性において常に中心的な目標の1つとなっている。
しかし、既存の回路解析は、主にフィードフォワード層を排除したために、これらのモデルの完全な機能範囲を表現できないことが多い。
さらに、複数の絡み合ったスキルを本質的に含むテキストから単一の言語スキルの効果を分離することは、大きな課題となる。
これらのギャップに対処するために,言語モデルのメモリ読み取り機能を完全かつ独立に操作する最小単位であるメモリ回路を導入し,異なるメモリ回路を接続する経路のアンサンブルである回路グラフに変換器モデルを正確に切り離す。
この不整合に基づいて、我々は3つの重要な言語スキル、すなわち先進トケンスキル、誘導スキル、インコンテキストラーニング(ICL)スキルに責任を負うスキルパスとして名付けられた有能な回路経路を同定し、介入と対策による因果効果推定を活用する。
各種データセットを用いた実験により,認識されたスキルパスと言語スキルの対応性を確認し,長期にわたる3つの仮説を検証した。
1) 言語スキルは,回路分割により識別することができる。
2) 単純な言語スキルは浅い層に、複雑な言語スキルは深い層に存在している。
3)より単純な言語スキルの上に複雑な言語スキルが形成される。
私たちのコードは、https://github.com/Zodiark-ch/Language-Skill-of-LLMsで利用可能です。
関連論文リスト
- Rethinking Mutual Information for Language Conditioned Skill Discovery
on Imitation Learning [36.624923972563415]
我々はLanguage Conditioned Skill Discovery (LCSD)として知られるエンドツーエンドの模倣学習手法を提案する。
ベクトル量子化を利用して離散潜在スキルを学習し、軌跡のスキルシーケンスを活用して高レベルの意味的命令を再構築する。
提案手法は,未確認タスクに対する一般化能力の向上,スキル解釈性の向上,タスク完了の成功率の向上などを示す。
論文 参考訳(メタデータ) (2024-02-27T13:53:52Z) - Are Structural Concepts Universal in Transformer Language Models?
Towards Interpretable Cross-Lingual Generalization [27.368684663279463]
本稿では,言語間の概念対応を明確に整合させ,言語間の一般化を促進する可能性について検討する。
言語構文の側面をテストベッドとして,43言語を解析した結果,高い整合性を示した。
本稿では,メタラーニングに基づく概念空間の整合学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T14:50:51Z) - SkillNet-X: A Multilingual Multitask Model with Sparsely Activated
Skills [51.74947795895178]
本稿では,SkillNet-Xという多言語マルチタスクモデルを提案する。
いくつかの言語固有のスキルとタスク固有のスキルを定義し、それぞれがスキルモジュールに対応する。
我々はSkillNet-Xを4言語で11の自然言語理解データセット上で評価した。
論文 参考訳(メタデータ) (2023-06-28T12:53:30Z) - Language Is Not All You Need: Aligning Perception with Language Models [110.51362453720458]
Kosmos-1はMLLM(Multimodal Large Language Model)で、一般的なモダリティを認識し、文脈で学習し、指示に従うことができる。
我々は、任意にインターリーブされたテキストと画像、画像キャプチャペア、テキストデータを含む、Webスケールのマルチモーダルコーパス上で、Kosmos-1をスクラッチからトレーニングする。
実験結果から,Kosmos-1 は (i) 言語理解,生成,さらには OCR フリー NLP において優れた性能を発揮することが示された。
また、MLLMは言語からマルチモーダルへの知識の伝達や多モーダルから言語への知識の伝達といった、クロスモーダル転送の恩恵を受けることができることを示す。
論文 参考訳(メタデータ) (2023-02-27T18:55:27Z) - Grounding Language with Visual Affordances over Unstructured Data [26.92329260907805]
本研究では,非構造化,オフライン,リセットのないデータから,言語条件のロボットスキルを効率的に学習するための新しい手法を提案する。
我々は、言語による全データの1%しか必要としない自己教師型ビジュオ言語割当モデルを利用する。
提案手法は,従来の手法よりも桁違いに少ないデータで,リアルタイムに長時間の多層タスクを完了できることがわかった。
論文 参考訳(メタデータ) (2022-10-04T21:16:48Z) - Multi-level Contrastive Learning for Cross-lingual Spoken Language
Understanding [90.87454350016121]
コントラスト学習のための難解なサンプルを, あらゆるレベルで生成するコードスイッチング手法を開発した。
言語間知識伝達にラベルセマンティクスを利用するラベル認識ジョイントモデルを開発した。
論文 参考訳(メタデータ) (2022-05-07T13:44:28Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - LISA: Learning Interpretable Skill Abstractions from Language [85.20587800593293]
言語条件による実演から多種多様な解釈可能なスキルを学習できる階層型模倣学習フレームワークを提案する。
本手法は, 逐次的意思決定問題において, 言語に対するより自然な条件付け方法を示す。
論文 参考訳(メタデータ) (2022-02-28T19:43:24Z) - Probing Pretrained Language Models for Lexical Semantics [76.73599166020307]
類型的多様言語と5つの異なる語彙課題にまたがる系統的経験分析を行った。
我々の結果は、普遍的に維持されるパターンとベストプラクティスを示しているが、言語やタスクにまたがる顕著なバリエーションを示している。
論文 参考訳(メタデータ) (2020-10-12T14:24:01Z) - Zero-Shot Cross-Lingual Transfer with Meta Learning [45.29398184889296]
英語以外の言語ではほとんど、あるいは全くデータがない場合に、複数の言語でのトレーニングモデルの設定を同時に検討する。
メタラーニングを用いて、この挑戦的な設定にアプローチできることが示される。
我々は、標準教師付きゼロショットのクロスランガルと、異なる自然言語理解タスクのための数ショットのクロスランガル設定を用いて実験を行った。
論文 参考訳(メタデータ) (2020-03-05T16:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。