論文の概要: VectorGraphNET: Graph Attention Networks for Accurate Segmentation of Complex Technical Drawings
- arxiv url: http://arxiv.org/abs/2410.01336v1
- Date: Wed, 2 Oct 2024 08:53:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:39:21.812688
- Title: VectorGraphNET: Graph Attention Networks for Accurate Segmentation of Complex Technical Drawings
- Title(参考訳): VectorGraphNET:複雑な技術図面の正確なセグメンテーションのためのグラフ注意ネットワーク
- Authors: Andrea Carrara, Stavros Nousias, André Borrmann,
- Abstract要約: 本稿では,PDF形式での技術図面からベクトルデータを抽出し,解析する手法を提案する。
提案手法では,PDFファイルをSVGフォーマットに変換し,機能豊富なグラフ表現を生成する。
次に、階層的なラベル定義を持つグラフアテンション変換器を適用し、正確な線レベルセグメンテーションを実現する。
- 参考スコア(独自算出の注目度): 0.40964539027092917
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a new approach to extract and analyze vector data from technical drawings in PDF format. Our method involves converting PDF files into SVG format and creating a feature-rich graph representation, which captures the relationships between vector entities using geometrical information. We then apply a graph attention transformer with hierarchical label definition to achieve accurate line-level segmentation. Our approach is evaluated on two datasets, including the public FloorplanCAD dataset, which achieves state-of-the-art results on weighted F1 score, surpassing existing methods. The proposed vector-based method offers a more scalable solution for large-scale technical drawing analysis compared to vision-based approaches, while also requiring significantly less GPU power than current state-of-the-art vector-based techniques. Moreover, it demonstrates improved performance in terms of the weighted F1 (wF1) score on the semantic segmentation task. Our results demonstrate the effectiveness of our approach in extracting meaningful information from technical drawings, enabling new applications, and improving existing workflows in the AEC industry. Potential applications of our approach include automated building information modeling (BIM) and construction planning, which could significantly impact the efficiency and productivity of the industry.
- Abstract(参考訳): 本稿では,PDF形式での技術図面からベクトルデータを抽出し,解析する手法を提案する。
提案手法では,PDFファイルをSVG形式に変換し,幾何学的情報を用いてベクトル要素間の関係をキャプチャする特徴豊富なグラフ表現を作成する。
次に、階層的なラベル定義を持つグラフアテンション変換器を適用し、正確な線レベルセグメンテーションを実現する。
提案手法は,既存手法を超越した重み付きF1スコアの最先端結果が得られる公開FloorplanCADデータセットを含む2つのデータセットで評価される。
提案したベクトルベース手法は、ビジョンベースのアプローチよりも大規模技術描画解析にスケーラブルなソリューションを提供すると同時に、現在の最先端のベクトルベース手法よりもGPUパワーをはるかに少なくする。
さらに,意味的セグメンテーションタスクにおける重み付けされたF1スコア(wF1)の性能向上を示す。
本研究は,技術図面から有意義な情報を抽出し,新たなアプリケーションを実現し,AEC産業における既存のワークフローを改善するためのアプローチの有効性を実証するものである。
このアプローチの潜在的な応用としては、自動建築情報モデリング(BIM)と建設計画があり、これは産業の効率と生産性に大きな影響を及ぼす可能性がある。
関連論文リスト
- Language Models are Graph Learners [70.14063765424012]
言語モデル(LM)は、グラフニューラルネットワーク(GNN)やグラフトランスフォーマー(GT)など、ドメイン固有のモデルの優位性に挑戦している。
本稿では,ノード分類タスクにおける最先端のGNNに匹敵する性能を実現するために,既製のLMを有効活用する手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T08:27:54Z) - SGTR+: End-to-end Scene Graph Generation with Transformer [42.396971149458324]
シーングラフ生成(SGG)は、その構成特性のため、困難な視覚的理解課題である。
これまでのほとんどの作業ではボトムアップ、2段階またはポイントベースの1段階のアプローチを採用していた。
本稿では、上記の問題に対処する新しいSGG法を提案し、そのタスクを二部グラフ構築問題として定式化する。
論文 参考訳(メタデータ) (2024-01-23T15:18:20Z) - Gradient Flow of Energy: A General and Efficient Approach for Entity Alignment Decoding [24.613735853099534]
我々は,エンティティの埋め込みのみに依存する,新しい,一般化された,効率的なデコーディング手法をEAに導入する。
本手法はディリクレエネルギーを最小化してデコード処理を最適化し,グラフ内の勾配流を最大化し,グラフのホモフィリーを最大化する。
特に、この手法は、追加計算時間の6秒未満でこれらの進歩を達成する。
論文 参考訳(メタデータ) (2024-01-23T14:31:12Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Component Segmentation of Engineering Drawings Using Graph Convolutional
Networks [0.8941624592392744]
本稿では2次元工学的部分描画のベクトル化と機械解釈を自動化するためのデータ駆動型フレームワークを提案する。
これらの課題を克服するために,各ベクトル化コンポーネントの意味型を予測するディープラーニングベースのフレームワークを提案する。
その結果,本手法は最近の画像とグラフベースセグメンテーション法に比較して,最高の性能を示すことがわかった。
論文 参考訳(メタデータ) (2022-12-01T05:31:07Z) - Graph Property Prediction on Open Graph Benchmark: A Winning Solution by
Graph Neural Architecture Search [37.89305885538052]
PAS(Pooling Architecture Search)を導入してグラフ分類タスクのためのグラフニューラルネットワークフレームワークを設計する。
本稿では,GNNトポロジ設計手法であるF2GNNに基づいて改良を行い,グラフ特性予測タスクにおけるモデルの性能をさらに向上させる。
NAS法は,複数のタスクに対して高い一般化能力を有し,グラフ特性予測タスクの処理における本手法の利点が証明された。
論文 参考訳(メタデータ) (2022-07-13T08:17:48Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - ProGraML: Graph-based Deep Learning for Program Optimization and
Analysis [16.520971531754018]
本稿では,機械学習のためのグラフベースのプログラム表現であるProGraMLを紹介する。
ProGraMLは平均94.0F1スコアを獲得し、最先端のアプローチを著しく上回っている。
そして、我々のアプローチを2つのハイレベルなタスク - 不均一なデバイスマッピングとプログラム分類 - に適用し、その両方で新しい最先端のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2020-03-23T20:27:00Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。