Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2410.01340v2
- Date: Wed, 30 Oct 2024 14:10:21 GMT
- Title: Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks
- Authors: Marcus Haywood-Alexander, Giacomo Arcieri, Antonios Kamariotis, Eleni Chatzi,
- Abstract summary: This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate modelling of structural dynamics is crucial across numerous engineering applications, such as Structural Health Monitoring (SHM), seismic analysis, and vibration control. Often, these models originate from physics-based principles and can be derived from corresponding governing equations, often of differential equation form. However, complex system characteristics, such as nonlinearities and energy dissipation mechanisms, often imply that such models are approximative and often imprecise. This challenge is further compounded in SHM, where sensor data is often sparse, making it difficult to fully observe the system's states. To address these issues, this paper explores the use of Physics-Informed Neural Networks (PINNs), a class of physics-enhanced machine learning (PEML) techniques, for the identification and estimation of dynamical systems. PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena, even in the presence of uncertainties. This study specifically investigates three key applications of PINNs: state estimation in systems with sparse sensing, joint state-parameter estimation, when both system response and parameters are unknown, and parameter estimation within a Bayesian framework to quantify uncertainties. The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors. However, these errors tend to have a more significant impact on parameter estimation, as the optimization process must reconcile discrepancies between the prescribed model and the true system behavior. Despite these challenges, PINNs show promise in dynamical system modeling, offering a robust approach to handling uncertainties.
Related papers
- Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A critical look at deep neural network for dynamic system modeling [0.0]
This paper questions the capability of (deep) neural networks for the modeling of dynamic systems using input-output data.
For the identification of linear time-invariant (LTI) dynamic systems, two representative neural network models are compared.
For the LTI system, both LSTM and CFNN fail to deliver consistent models even in noise-free cases.
arXiv Detail & Related papers (2023-01-27T09:03:05Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Respecting causality is all you need for training physics-informed
neural networks [2.1485350418225244]
PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior.
We propose a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training.
This is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.
arXiv Detail & Related papers (2022-03-14T18:08:18Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.