論文の概要: High-quality Animatable Eyelid Shapes from Lightweight Captures
- arxiv url: http://arxiv.org/abs/2410.01360v1
- Date: Wed, 2 Oct 2024 09:18:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:29:22.104143
- Title: High-quality Animatable Eyelid Shapes from Lightweight Captures
- Title(参考訳): 軽量カメラによる高品質アニマタブルアイライド形状
- Authors: Junfeng Lyu, Feng Xu,
- Abstract要約: 携帯電話で撮影したRGBビデオのみを用いて、より詳細なアイライド再構成とアニメーションを実現する新しい手法を提案する。
本手法は眼球の静的情報と動的情報を用いて眼球再建を支援する。
我々は,眼科のセマンティックアニメーション制御を実現するために,ニューラルアイリッド制御モジュールを開発した。
- 参考スコア(独自算出の注目度): 6.768777045612227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-quality eyelid reconstruction and animation are challenging for the subtle details and complicated deformations. Previous works usually suffer from the trade-off between the capture costs and the quality of details. In this paper, we propose a novel method that can achieve detailed eyelid reconstruction and animation by only using an RGB video captured by a mobile phone. Our method utilizes both static and dynamic information of eyeballs (e.g., positions and rotations) to assist the eyelid reconstruction, cooperating with an automatic eyeball calibration method to get the required eyeball parameters. Furthermore, we develop a neural eyelid control module to achieve the semantic animation control of eyelids. To the best of our knowledge, we present the first method for high-quality eyelid reconstruction and animation from lightweight captures. Extensive experiments on both synthetic and real data show that our method can provide more detailed and realistic results compared with previous methods based on the same-level capture setups. The code is available at https://github.com/StoryMY/AniEyelid.
- Abstract(参考訳): 高品質なアイライド再構成とアニメーションは、微妙な細部と複雑な変形のために難しい。
従来の作業は通常、捕獲コストと細部の品質の間のトレードオフに悩まされる。
本稿では,携帯電話で撮影したRGBビデオのみを用いて,詳細なアイライド再構成とアニメーションを実現する新しい手法を提案する。
本手法では,眼球の静的および動的情報(例えば,位置,回転)を用いて眼球再構成を支援し,眼球自動校正法と協調して眼球パラメータの取得を行う。
さらに,眼科のセマンティックアニメーション制御を実現するために,ニューラルアイリッド制御モジュールを開発した。
我々の知る限り、我々は軽量撮影から高品質なアイライド再構成とアニメーションを初めて提案する。
合成データと実データの両方に対する大規模な実験により,本手法は,同レベルのキャプチャ設定に基づく従来の手法と比較して,より詳細かつ現実的な結果が得られることが示された。
コードはhttps://github.com/StoryMY/AniEyelid.comで入手できる。
関連論文リスト
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
マルチビュー画像から高ダイナミックで変形可能な人間の頭部アバターをリアルタイムで生成する手法を提案する。
本手法のコアとなるのは,顔表情と頭部運動の複雑なダイナミクスを捉えることができる頭部モデルの階層的表現である。
我々は、この粗い顔アバターモデルを、エンドツーエンドのフレームワークで学習可能なパラメータとして頭部ポーズとともに訓練する。
論文 参考訳(メタデータ) (2024-09-18T13:05:43Z) - Interactive Rendering of Relightable and Animatable Gaussian Avatars [37.73483372890271]
本稿では,多視点映像や単眼アバター映像から身体材料と照明を分離する簡便で効率的な方法を提案する。
提案手法は,合成データと実データの両方で高速に高品質な結果が得られる。
論文 参考訳(メタデータ) (2024-07-15T13:25:07Z) - D-NPC: Dynamic Neural Point Clouds for Non-Rigid View Synthesis from Monocular Video [53.83936023443193]
本稿では,スマートフォンのキャプチャなどのモノクロ映像から動的に新しいビューを合成する手法を導入することにより,この分野に貢献する。
我々のアプローチは、局所的な幾何学と外観を別個のハッシュエンコードされたニューラル特徴グリッドにエンコードする暗黙の時間条件のポイントクラウドである、$textitdynamic Neural point cloudとして表現されている。
論文 参考訳(メタデータ) (2024-06-14T14:35:44Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAMは、ハイブリッド表現を備えた新しいRGB-DセマンティックSLAMアプローチである。
本手法は画像に基づく特徴抽出と多視点幾何制約を統合し,外観の細部を改良する。
実験により, 合成データと実世界のデータ追跡の両面において, 最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-11-30T21:34:44Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
本稿では、特定の動きシーケンスに従って、特定の参照アイデンティティのビデオを生成することを目的とした、人間の画像アニメーションタスクについて検討する。
既存のアニメーションは、通常、フレームウォーピング技術を用いて参照画像を目標運動に向けてアニメーションする。
MagicAnimateは,時間的一貫性の向上,参照画像の忠実な保存,アニメーションの忠実性向上を目的とした,拡散に基づくフレームワークである。
論文 参考訳(メタデータ) (2023-11-27T18:32:31Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
私たちのゴールは、幾何学的に正確で、リアルで、楽しい、現在のレンダリングシステムと互換性のあるビデオから、パーソナライズ可能な3Dアバターを効率的に学習することです。
単眼ビデオからアニマタブルアバターとリライトブルアバターの作成を可能にする技術であるFLAREを紹介する。
論文 参考訳(メタデータ) (2023-10-26T16:13:00Z) - Unsupervised Learning of Style-Aware Facial Animation from Real Acting
Performances [3.95944314850151]
本稿では, ブレンド形状, 動的テクスチャ, ニューラルレンダリングに基づく写真リアルな頭部モデルのテキスト/音声駆動アニメーションのための新しい手法を提案する。
本手法は,テキストや音声をアニメーションパラメータの列に変換する条件付きCNNに基づいている。
リアルなリアルタイムレンダリングのために、私たちは、改良された色と前景マットを演算することで、ピクセル化ベースのレンダリングを洗練するU-Netを訓練します。
論文 参考訳(メタデータ) (2023-06-16T17:58:04Z) - HQ3DAvatar: High Quality Controllable 3D Head Avatar [65.70885416855782]
本稿では,高フォトリアリスティックなデジタルヘッドアバターを構築するための新しいアプローチを提案する。
本手法はニューラルネットワークによってパラメータ化された暗黙関数を用いて標準空間を学習する。
テスト時,本手法は単眼のRGBビデオによって駆動される。
論文 参考訳(メタデータ) (2023-03-25T13:56:33Z) - Neural Face Models for Example-Based Visual Speech Synthesis [2.2817442144155207]
マルチビュー映像に基づく顔の動きキャプチャのためのマーカーレスアプローチを提案する。
アニメーション中の表情をシームレスに表現するために,表情のニューラル表現を学習する。
論文 参考訳(メタデータ) (2020-09-22T07:35:33Z) - Going beyond Free Viewpoint: Creating Animatable Volumetric Video of
Human Performances [7.7824496657259665]
本稿では,人間の演奏の高品質な映像コンテンツ作成のためのエンドツーエンドパイプラインを提案する。
セマンティックエンリッチメントと幾何学的アニメーション能力は、3Dデータに時間的一貫性を確立することによって達成される。
ポーズ編集では、キャプチャしたデータを可能な限り活用し、キャプチャしたフレームをキネマティックに変形して所望のポーズに適合させる。
論文 参考訳(メタデータ) (2020-09-02T09:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。