EVA-Gaussian: 3D Gaussian-based Real-time Human Novel View Synthesis under Diverse Camera Settings
- URL: http://arxiv.org/abs/2410.01425v1
- Date: Wed, 2 Oct 2024 11:23:08 GMT
- Title: EVA-Gaussian: 3D Gaussian-based Real-time Human Novel View Synthesis under Diverse Camera Settings
- Authors: Yingdong Hu, Zhening Liu, Jiawei Shao, Zehong Lin, Jun Zhang,
- Abstract summary: EVA-Gaussian is a real-time pipeline for 3D human novel view synthesis across diverse camera settings.
We introduce an Efficient cross-View Attention (EVA) module to accurately estimate the position of each 3D Gaussian from the source images.
We incorporate a powerful anchor loss function for both 3D Gaussian attributes and human face landmarks.
- Score: 11.248908608011941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The feed-forward based 3D Gaussian Splatting method has demonstrated exceptional capability in real-time human novel view synthesis. However, existing approaches are restricted to dense viewpoint settings, which limits their flexibility in free-viewpoint rendering across a wide range of camera view angle discrepancies. To address this limitation, we propose a real-time pipeline named EVA-Gaussian for 3D human novel view synthesis across diverse camera settings. Specifically, we first introduce an Efficient cross-View Attention (EVA) module to accurately estimate the position of each 3D Gaussian from the source images. Then, we integrate the source images with the estimated Gaussian position map to predict the attributes and feature embeddings of the 3D Gaussians. Moreover, we employ a recurrent feature refiner to correct artifacts caused by geometric errors in position estimation and enhance visual fidelity.To further improve synthesis quality, we incorporate a powerful anchor loss function for both 3D Gaussian attributes and human face landmarks. Experimental results on the THuman2.0 and THumansit datasets showcase the superiority of our EVA-Gaussian approach in rendering quality across diverse camera settings. Project page: https://zhenliuzju.github.io/huyingdong/EVA-Gaussian.
Related papers
- NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.