EVA-Gaussian: 3D Gaussian-based Real-time Human Novel View Synthesis under Diverse Multi-view Camera Settings
- URL: http://arxiv.org/abs/2410.01425v2
- Date: Wed, 12 Mar 2025 12:14:39 GMT
- Title: EVA-Gaussian: 3D Gaussian-based Real-time Human Novel View Synthesis under Diverse Multi-view Camera Settings
- Authors: Yingdong Hu, Zhening Liu, Jiawei Shao, Zehong Lin, Jun Zhang,
- Abstract summary: 3D Gaussian Splatting methods have demonstrated exceptional capability in real-time novel view synthesis for human models.<n>We propose a novel pipeline named EVA-Gaussian for 3D human novel view synthesis across diverse multi-view camera settings.
- Score: 11.248908608011941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feed-forward based 3D Gaussian Splatting methods have demonstrated exceptional capability in real-time novel view synthesis for human models. However, current approaches are confined to either dense viewpoint configurations or restricted image resolutions. These limitations hinder their flexibility in free-viewpoint rendering across a wide range of camera view angle discrepancies, and also restrict their ability to recover fine-grained human details in real time using commonly available GPUs. To address these challenges, we propose a novel pipeline named EVA-Gaussian for 3D human novel view synthesis across diverse multi-view camera settings. Specifically, we first design an Efficient Cross-View Attention (EVA) module to effectively fuse cross-view information under high resolution inputs and sparse view settings, while minimizing temporal and computational overhead. Additionally, we introduce a feature refinement mechianism to predict the attributes of the 3D Gaussians and assign a feature value to each Gaussian, enabling the correction of artifacts caused by geometric inaccuracies in position estimation and enhancing overall visual fidelity. Experimental results on the THuman2.0 and THumansit datasets showcase the superiority of EVA-Gaussian in rendering quality across diverse camera settings. Project page: https://zhenliuzju.github.io/huyingdong/EVA-Gaussian.
Related papers
- EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.
We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - RoGSplat: Learning Robust Generalizable Human Gaussian Splatting from Sparse Multi-View Images [39.03889696169877]
RoGSplat is a novel approach for synthesizing high-fidelity novel views of unseen human from sparse multi-view images.
Our method outperforms state-of-the-art methods in novel view synthesis and cross-dataset generalization.
arXiv Detail & Related papers (2025-03-18T12:18:34Z) - NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - UniGS: Modeling Unitary 3D Gaussians for Novel View Synthesis from Sparse-view Images [20.089890859122168]
We introduce UniGS, a novel 3D Gaussian reconstruction and novel view synthesis model.
UniGS predicts a high-fidelity representation of 3D Gaussians from arbitrary number of posed sparse-view images.
arXiv Detail & Related papers (2024-10-17T03:48:02Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
We propose a few-shot view synthesis framework based on 3D Gaussian Splatting.
This framework enables real-time and photo-realistic view synthesis with as few as three training views.
FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets.
arXiv Detail & Related papers (2023-12-01T09:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.