The Great Contradiction Showdown: How Jailbreak and Stealth Wrestle in Vision-Language Models?
- URL: http://arxiv.org/abs/2410.01438v2
- Date: Sun, 02 Feb 2025 04:59:41 GMT
- Title: The Great Contradiction Showdown: How Jailbreak and Stealth Wrestle in Vision-Language Models?
- Authors: Ching-Chia Kao, Chia-Mu Yu, Chun-Shien Lu, Chu-Song Chen,
- Abstract summary: Vision-Language Models (VLMs) have achieved remarkable performance on a variety of tasks, yet they remain vulnerable to jailbreak attacks.
We provide an information-theoretic framework for understanding the fundamental trade-off between the effectiveness of these attacks and their stealthiness.
We propose an efficient algorithm for detecting non-stealthy jailbreak attacks, offering significant improvements in model robustness.
- Score: 23.347349690954452
- License:
- Abstract: Vision-Language Models (VLMs) have achieved remarkable performance on a variety of tasks, yet they remain vulnerable to jailbreak attacks that compromise safety and reliability. In this paper, we provide an information-theoretic framework for understanding the fundamental trade-off between the effectiveness of these attacks and their stealthiness. Drawing on Fano's inequality, we demonstrate how an attacker's success probability is intrinsically linked to the stealthiness of generated prompts. Building on this, we propose an efficient algorithm for detecting non-stealthy jailbreak attacks, offering significant improvements in model robustness. Experimental results highlight the tension between strong attacks and their detectability, providing insights into both adversarial strategies and defense mechanisms.
Related papers
- How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation [39.44000290664494]
Jailbreak attacks, where harmful prompts bypass generative models' built-in safety, raise serious concerns about model vulnerability.
This paper systematically examines jailbreak defenses by reframing the standard generation task as a binary classification problem.
We identify two key defense mechanisms: safety shift, which increases refusal rates across all queries, and harmfulness discrimination, which improves the model's ability to distinguish between harmful and benign inputs.
arXiv Detail & Related papers (2025-02-20T12:07:40Z) - Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
We introduce POATE, a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses.
PoATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety.
To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses.
arXiv Detail & Related papers (2025-01-03T15:40:03Z) - Antelope: Potent and Concealed Jailbreak Attack Strategy [7.970002819722513]
Antelope is a more robust and covert jailbreak attack strategy designed to expose security vulnerabilities inherent in generative models.
We successfully exploit the transferability of model-based attacks to penetrate online black-box services.
arXiv Detail & Related papers (2024-12-11T07:22:51Z) - Chain of Attack: On the Robustness of Vision-Language Models Against Transfer-Based Adversarial Attacks [34.40254709148148]
Pre-trained vision-language models (VLMs) have showcased remarkable performance in image and natural language understanding.
Their potential safety and robustness issues raise concerns that adversaries may evade the system and cause these models to generate toxic content through malicious attacks.
We present Chain of Attack (CoA), which iteratively enhances the generation of adversarial examples based on the multi-modal semantic update.
arXiv Detail & Related papers (2024-11-24T05:28:07Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
We investigate why Vision Large Language Models (VLLMs) are prone to jailbreak attacks.
We then make a key observation: existing defense mechanisms suffer from an textbfover-prudence problem.
We find that the two representative evaluation methods for jailbreak often exhibit chance agreement.
arXiv Detail & Related papers (2024-11-13T07:57:19Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Defending Large Language Models against Jailbreak Attacks via Semantic
Smoothing [107.97160023681184]
Aligned large language models (LLMs) are vulnerable to jailbreaking attacks.
We propose SEMANTICSMOOTH, a smoothing-based defense that aggregates predictions of semantically transformed copies of a given input prompt.
arXiv Detail & Related papers (2024-02-25T20:36:03Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.