Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey
- URL: http://arxiv.org/abs/2411.09259v1
- Date: Thu, 14 Nov 2024 07:51:51 GMT
- Title: Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey
- Authors: Xuannan Liu, Xing Cui, Peipei Li, Zekun Li, Huaibo Huang, Shuhan Xia, Miaoxuan Zhang, Yueying Zou, Ran He,
- Abstract summary: Multimodal generative models are susceptible to jailbreak attacks, which can bypass built-in safety mechanisms and induce the production of potentially harmful content.
This survey reviews jailbreak and defense in multimodal generative models.
- Score: 50.031628043029244
- License:
- Abstract: The rapid evolution of multimodal foundation models has led to significant advancements in cross-modal understanding and generation across diverse modalities, including text, images, audio, and video. However, these models remain susceptible to jailbreak attacks, which can bypass built-in safety mechanisms and induce the production of potentially harmful content. Consequently, understanding the methods of jailbreak attacks and existing defense mechanisms is essential to ensure the safe deployment of multimodal generative models in real-world scenarios, particularly in security-sensitive applications. To provide comprehensive insight into this topic, this survey reviews jailbreak and defense in multimodal generative models. First, given the generalized lifecycle of multimodal jailbreak, we systematically explore attacks and corresponding defense strategies across four levels: input, encoder, generator, and output. Based on this analysis, we present a detailed taxonomy of attack methods, defense mechanisms, and evaluation frameworks specific to multimodal generative models. Additionally, we cover a wide range of input-output configurations, including modalities such as Any-to-Text, Any-to-Vision, and Any-to-Any within generative systems. Finally, we highlight current research challenges and propose potential directions for future research.The open-source repository corresponding to this work can be found at https://github.com/liuxuannan/Awesome-Multimodal-Jailbreak.
Related papers
- IDEATOR: Jailbreaking Large Vision-Language Models Using Themselves [67.30731020715496]
We propose a novel jailbreak method named IDEATOR, which autonomously generates malicious image-text pairs for black-box jailbreak attacks.
IDEATOR uses a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model.
It achieves a 94% success rate in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high success rates of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Meta's Chameleon.
arXiv Detail & Related papers (2024-10-29T07:15:56Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.
Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.
This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively.
These models are susceptible to jailbreak attacks, where malicious users can break the safety alignment of the target model and generate misleading and harmful answers.
We propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs.
arXiv Detail & Related papers (2024-07-31T15:02:46Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
Large Language Models (LLMs) have performed exceptionally in various text-generative tasks.
"jailbreaking" induces the model to generate malicious responses against the usage policy and society.
We propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods.
arXiv Detail & Related papers (2024-07-05T06:57:30Z) - JailbreakZoo: Survey, Landscapes, and Horizons in Jailbreaking Large Language and Vision-Language Models [12.338360007906504]
Large Language Models (LLMs) and Vision-Language Models (VLMs) raise concerns regarding security and ethical alignment.
Our study categorizes jailbreaks into seven distinct types and elaborates on defense strategies that address these vulnerabilities.
Our findings underscore the necessity for a unified perspective that integrates both jailbreak strategies and defensive solutions to foster a robust, secure, and reliable environment for the next generation of language models.
arXiv Detail & Related papers (2024-06-26T02:20:23Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.