Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs
- URL: http://arxiv.org/abs/2505.02862v3
- Date: Fri, 27 Jun 2025 08:31:28 GMT
- Title: Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs
- Authors: Haoming Yang, Ke Ma, Xiaojun Jia, Yingfei Sun, Qianqian Xu, Qingming Huang,
- Abstract summary: We propose a novel jailbreak attack framework, inspired by cognitive decomposition and biases in human cognition.<n>We employ cognitive decomposition to reduce the complexity of malicious prompts and relevance bias to reorganize prompts.<n>We also introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm.
- Score: 83.11815479874447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable performance of Large Language Models (LLMs), they remain vulnerable to jailbreak attacks, which can compromise their safety mechanisms. Existing studies often rely on brute-force optimization or manual design, failing to uncover potential risks in real-world scenarios. To address this, we propose a novel jailbreak attack framework, ICRT, inspired by heuristics and biases in human cognition. Leveraging the simplicity effect, we employ cognitive decomposition to reduce the complexity of malicious prompts. Simultaneously, relevance bias is utilized to reorganize prompts, enhancing semantic alignment and inducing harmful outputs effectively. Furthermore, we introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm by employing ranking aggregation methods such as Elo, HodgeRank, and Rank Centrality to comprehensively quantify the harmfulness of generated content. Experimental results show that our approach consistently bypasses mainstream LLMs' safety mechanisms and generates high-risk content, providing insights into jailbreak attack risks and contributing to stronger defense strategies.
Related papers
- ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning [49.47193675702453]
Large Language Models (LLMs) have demonstrated remarkable generative capabilities.<n>LLMs remain vulnerable to malicious instructions that can bypass safety constraints.<n>We propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one.
arXiv Detail & Related papers (2025-07-14T09:05:54Z) - Beyond Jailbreaks: Revealing Stealthier and Broader LLM Security Risks Stemming from Alignment Failures [17.9033567125575]
Large language models (LLMs) are increasingly deployed in real-world applications, raising concerns about their security.<n>While jailbreak attacks highlight failures under overtly harmful queries, they overlook a critical risk: incorrectly answering harmless-looking inputs can be dangerous and cause real-world harm (Implicit Harm)<n>We systematically reformulate the LLM risk landscape through a structured quadrant perspective based on output factuality and input harmlessness, uncovering a high-risk region.
arXiv Detail & Related papers (2025-06-09T03:52:43Z) - AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models [0.0]
Large Language Models (LLMs) continue to exhibit vulnerabilities to jailbreaking attacks.<n>We present AutoAdv, a novel framework that automates adversarial prompt generation.<n>We show that our attacks achieve jailbreak success rates of up to 86% for harmful content generation.
arXiv Detail & Related papers (2025-04-18T08:38:56Z) - Sugar-Coated Poison: Benign Generation Unlocks LLM Jailbreaking [15.953888359667497]
jailbreak attacks based on prompt engineering have become a major safety threat.<n>This study introduces the concept of Defense Threshold Decay (DTD), revealing the potential safety impact caused by LLMs' benign generation.<n>We propose the Sugar-Coated Poison attack paradigm, which uses a "semantic reversal" strategy to craft benign inputs that are opposite in meaning to malicious intent.
arXiv Detail & Related papers (2025-04-08T03:57:09Z) - Representation Bending for Large Language Model Safety [27.842146980762934]
Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks pose significant challenges.<n>This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs.<n>RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates.
arXiv Detail & Related papers (2025-04-02T09:47:01Z) - Align in Depth: Defending Jailbreak Attacks via Progressive Answer Detoxification [17.500701903902094]
Large Language Models (LLMs) are vulnerable to jailbreak attacks, which use crafted prompts to elicit toxic responses.<n>This paper proposes DEEPALIGN, a robust defense framework that fine-tunes LLMs to progressively detoxify generated content.
arXiv Detail & Related papers (2025-03-14T08:32:12Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks.<n>We propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge.
arXiv Detail & Related papers (2025-03-05T18:01:05Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
We introduce POATE, a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses.<n>PoATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety.<n>To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses.
arXiv Detail & Related papers (2025-01-03T15:40:03Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.476222570886483]
Large language models (LLMs) have demonstrated immense utility across various industries.<n>As LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts.<n>This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens.
arXiv Detail & Related papers (2024-10-09T12:09:30Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Improved Generation of Adversarial Examples Against Safety-aligned LLMs [72.38072942860309]
Adversarial prompts generated using gradient-based methods exhibit outstanding performance in performing automatic jailbreak attacks against safety-aligned LLMs.
In this paper, we explore a new perspective on this problem, suggesting that it can be alleviated by leveraging innovations inspired in transfer-based attacks.
We show that 87% of the query-specific adversarial suffixes generated by the developed combination can induce Llama-2-7B-Chat to produce the output that exactly matches the target string on AdvBench.
arXiv Detail & Related papers (2024-05-28T06:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.