Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling
- URL: http://arxiv.org/abs/2410.01440v4
- Date: Sat, 16 Nov 2024 13:58:45 GMT
- Title: Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling
- Authors: Jinghan Li, Zhicheng Sun, Fei Li, Cao Sheng, Jiazhong Yu, Yadong Mu,
- Abstract summary: We advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached.
A nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning.
Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with better scaling for inference.
- Score: 23.62433580021779
- License:
- Abstract: In the endeavor to make autonomous robots take actions, task planning is a major challenge that requires translating high-level task descriptions into long-horizon action sequences. Despite recent advances in language model agents, they remain prone to planning errors and limited in their ability to plan ahead. To address these limitations in robotic planning, we advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached. Remarkably, this process can be optimized end-to-end from an analytical perspective without the need to curate additional verifiers or reward models, allowing us to train self-refining planners in a simple supervised learning fashion. Meanwhile, a nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning that incorporates useful feedback from the environment (or an internal world model). Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with better scaling for inference computation. Code is available at https://github.com/Singularity0104/equilibrium-planner.
Related papers
- Adaptive Planning with Generative Models under Uncertainty [20.922248169620783]
Planning with generative models has emerged as an effective decision-making paradigm across a wide range of domains.
While continuous replanning at each timestep might seem intuitive because it allows decisions to be made based on the most recent environmental observations, it results in substantial computational challenges.
Our work addresses this challenge by introducing a simple adaptive planning policy that leverages the generative model's ability to predict long-horizon state trajectories.
arXiv Detail & Related papers (2024-08-02T18:07:53Z) - SparseDrive: End-to-End Autonomous Driving via Sparse Scene Representation [11.011219709863875]
We propose a new end-to-end autonomous driving paradigm named SparseDrive.
SparseDrive consists of a symmetric sparse perception module and a parallel motion planner.
For motion prediction and planning, we review the great similarity between these two tasks, leading to a parallel design for motion planner.
arXiv Detail & Related papers (2024-05-30T02:13:56Z) - Probabilistically Correct Language-based Multi-Robot Planning using Conformal Prediction [11.614036749291216]
We introduce a new distributed multi-robot planner called S-ATLAS for Safe plAnning for Teams of Language-instructed AgentS.
We show that the proposed planner can achieve user-specified task success rates, assuming successful plan execution.
We provide comparative experiments against related works showing that our method is significantly more computational efficient and achieves lower help rates.
arXiv Detail & Related papers (2024-02-23T15:02:44Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Skip-Plan: Procedure Planning in Instructional Videos via Condensed
Action Space Learning [85.84504287685884]
Skip-Plan is a condensed action space learning method for procedure planning in instructional videos.
By skipping uncertain nodes and edges in action chains, we transfer long and complex sequence functions into short but reliable ones.
Our model explores all sorts of reliable sub-relations within an action sequence in the condensed action space.
arXiv Detail & Related papers (2023-10-01T08:02:33Z) - Robots That Ask For Help: Uncertainty Alignment for Large Language Model
Planners [85.03486419424647]
KnowNo is a framework for measuring and aligning the uncertainty of large language models.
KnowNo builds on the theory of conformal prediction to provide statistical guarantees on task completion.
arXiv Detail & Related papers (2023-07-04T21:25:12Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain of Thought [95.37585041654535]
Embodied AI is capable of planning and executing action sequences for robots to accomplish long-horizon tasks in physical environments.
In this work, we introduce EmbodiedGPT, an end-to-end multi-modal foundation model for embodied AI.
Experiments show the effectiveness of EmbodiedGPT on embodied tasks, including embodied planning, embodied control, visual captioning, and visual question answering.
arXiv Detail & Related papers (2023-05-24T11:04:30Z) - Multimodal Contextualized Plan Prediction for Embodied Task Completion [9.659463406886301]
Task planning is an important component of traditional robotics systems enabling robots to compose fine grained skills to perform more complex tasks.
Recent work building systems for translating natural language to executable actions for task completion in simulated embodied agents is focused on directly predicting low level action sequences.
We focus on predicting a higher level plan representation for one such embodied task completion dataset - TEACh.
arXiv Detail & Related papers (2023-05-10T22:29:12Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
The ability to predict and plan into the future is fundamental for agents acting in the world.
Current learning approaches for visual prediction and planning fail on long-horizon tasks.
We propose a framework for visual prediction and planning that is able to overcome both of these limitations.
arXiv Detail & Related papers (2020-06-23T17:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.