Selective Aggregation for Low-Rank Adaptation in Federated Learning
- URL: http://arxiv.org/abs/2410.01463v2
- Date: Fri, 4 Oct 2024 05:38:49 GMT
- Title: Selective Aggregation for Low-Rank Adaptation in Federated Learning
- Authors: Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, Liangqiong Qu,
- Abstract summary: We introduce Federated Share-A Low-Rank Adaptation (FedSA-LoRA), which employs two low-rank trainable matrices $A$ and $B$ to model the weight update.
We extend our FedSA-LoRA method to these LoRA variants, resulting in FedSA-rsLoRA and FedSA-VeRA.
- Score: 10.683530421910028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate LoRA in federated learning through the lens of the asymmetry analysis of the learned $A$ and $B$ matrices. In doing so, we uncover that $A$ matrices are responsible for learning general knowledge, while $B$ matrices focus on capturing client-specific knowledge. Based on this finding, we introduce Federated Share-A Low-Rank Adaptation (FedSA-LoRA), which employs two low-rank trainable matrices $A$ and $B$ to model the weight update, but only $A$ matrices are shared with the server for aggregation. Moreover, we delve into the relationship between the learned $A$ and $B$ matrices in other LoRA variants, such as rsLoRA and VeRA, revealing a consistent pattern. Consequently, we extend our FedSA-LoRA method to these LoRA variants, resulting in FedSA-rsLoRA and FedSA-VeRA. In this way, we establish a general paradigm for integrating LoRA with FL, offering guidance for future work on subsequent LoRA variants combined with FL. Extensive experimental results on natural language understanding and generation tasks demonstrate the effectiveness of the proposed method. Our code is available at https://github.com/Pengxin-Guo/FedSA-LoRA.
Related papers
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - CoRA: Optimizing Low-Rank Adaptation with Common Subspace of Large Language Models [7.108651381160281]
Low-Rank Adaptation (LoRA) strategy balances efficiency and performance in fine-tuning large models.
We propose textbfCoRA: leveraging shared knowledge to optimize LoRA training by substituting its matrix $B$ with a common subspace from large models.
Our experiments show that the first approach achieves the same efficacy as the original LoRA fine-tuning while being more efficient than halving parameters.
arXiv Detail & Related papers (2024-08-31T12:48:27Z) - SBoRA: Low-Rank Adaptation with Regional Weight Updates [19.15481369459963]
This paper introduces Standard Basis LoRA (SBoRA), a novel parameter-efficient fine-tuning approach for Large Language Models.
SBoRA reduces the number of trainable parameters by half or doubles the rank with the similar number of trainable parameters as LoRA.
Our results demonstrate the superiority of SBoRA-FA over LoRA in various fine-tuning tasks, including commonsense reasoning and arithmetic reasoning.
arXiv Detail & Related papers (2024-07-07T15:37:13Z) - A Single Linear Layer Yields Task-Adapted Low-Rank Matrices [4.695004706877747]
Low-Rank Adaptation (LoRA) is a widely used Efficient Fine-Tuning (PEFT) method that updates an initial weight matrix $W_0$ with a delta matrix $Delta W$.
We show that CondLoRA maintains a performance on par with LoRA, despite the fact that the trainable parameters of CondLoRA are fewer than those of LoRA.
arXiv Detail & Related papers (2024-03-22T04:38:42Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
We propose ResLoRA, an improved framework of low-rank adaptation (LoRA)
Our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA.
The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-02-28T04:33:20Z) - Asymmetry in Low-Rank Adapters of Foundation Models [47.310550805920585]
This paper characterizes and leverages unexpected asymmetry in the importance of low-rank adapter matrices.
We show that fine-tuning $B$ is inherently more effective than fine-tuning $A$, and that a random untrained $A$ should perform nearly as well as a fine-tuned one.
arXiv Detail & Related papers (2024-02-26T18:59:12Z) - LoRA+: Efficient Low Rank Adaptation of Large Models [13.074320303580361]
We show that Low Rank Adaptation (LoRA) leads to suboptimal finetuning of models with large width (embedding dimension)
We then show that this suboptimality of LoRA can be corrected simply by setting different learning rates for the LoRA adapter matrices A and B with a well-chosen ratio.
In our experiments, LoRA$+$ improves performance (1-2 $%$ improvements) and finetuning speed (up to $sim$ 2X SpeedUp) at the same computational cost as LoRA.
arXiv Detail & Related papers (2024-02-19T18:33:49Z) - LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative
Tasks [72.88244322513039]
LoRA employs lightweight modules to customize large language models (LLMs) for each downstream task or domain.
We propose LoRA-Flow, which utilizes dynamic weights to adjust the impact of different LoRAs.
Experiments across six generative tasks demonstrate that our method consistently outperforms baselines with task-level fusion weights.
arXiv Detail & Related papers (2024-02-18T04:41:25Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
We introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA.
Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed Low-Rank Adaptation (DoRA)
DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning.
arXiv Detail & Related papers (2024-02-14T17:59:34Z) - Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of Low-Rank
Matrices [27.693028578653394]
Delta-LoRA is a novel parameter-efficient approach to fine-tune large language models (LLMs)
In contrast to LoRA and other low-rank adaptation methods such as AdaLoRA, Delta-LoRA not only updates the low-rank matrices $bA$ and $bB$, but also propagate the learning to the pre-trained weights $bW$.
arXiv Detail & Related papers (2023-09-05T17:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.