FedSVD: Adaptive Orthogonalization for Private Federated Learning with LoRA
- URL: http://arxiv.org/abs/2505.12805v1
- Date: Mon, 19 May 2025 07:32:56 GMT
- Title: FedSVD: Adaptive Orthogonalization for Private Federated Learning with LoRA
- Authors: Seanie Lee, Sangwoo Park, Dong Bok Lee, Dominik Wagner, Haebin Seong, Tobias Bocklet, Juho Lee, Sung Ju Hwang,
- Abstract summary: Low-Rank Adaptation (LoRA) is widely used for efficient fine-tuning of language models in federated learning (FL)<n>Low-Rank Adaptation (LoRA) is widely used for efficient fine-tuning of language models in federated learning (FL)
- Score: 61.79405341803085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-Rank Adaptation (LoRA), which introduces a product of two trainable low-rank matrices into frozen pre-trained weights, is widely used for efficient fine-tuning of language models in federated learning (FL). However, when combined with differentially private stochastic gradient descent (DP-SGD), LoRA faces substantial noise amplification: DP-SGD perturbs per-sample gradients, and the matrix multiplication of the LoRA update ($BA$) intensifies this effect. Freezing one matrix (e.g., $A$) reduces the noise but restricts model expressiveness, often resulting in suboptimal adaptation. To address this, we propose FedSVD, a simple yet effective method that introduces a global reparameterization based on singular value decomposition (SVD). In our approach, each client optimizes only the $B$ matrix and transmits it to the server. The server aggregates the $B$ matrices, computes the product $BA$ using the previous $A$, and refactorizes the result via SVD. This yields a new adaptive $A$ composed of the orthonormal right singular vectors of $BA$, and an updated $B$ containing the remaining SVD components. This reparameterization avoids quadratic noise amplification, while allowing $A$ to better capture the principal directions of the aggregate updates. Moreover, the orthonormal structure of $A$ bounds the gradient norms of $B$ and preserves more signal under DP-SGD, as confirmed by our theoretical analysis. As a result, FedSVD consistently improves stability and performance across a variety of privacy settings and benchmarks, outperforming relevant baselines under both private and non-private regimes.
Related papers
- Better Rates for Private Linear Regression in the Proportional Regime via Aggressive Clipping [19.186034457189162]
A common approach is to set the clipping constant much larger than the expected norm of the per-sample gradients.<n>While simplifying the analysis, this is however in sharp contrast with what empirical evidence suggests to optimize performance.<n>Our work bridges this gap between theory and practice by crucially operating in a regime where clipping happens frequently.
arXiv Detail & Related papers (2025-05-22T07:34:27Z) - Smoothed Normalization for Efficient Distributed Private Optimization [54.197255548244705]
Federated learning enables machine learning models with privacy of participants.<n>There is no differentially private distributed method for training, non-feedback problems.<n>We introduce a new distributed algorithm $alpha$-$sf NormEC$ with provable convergence guarantees.
arXiv Detail & Related papers (2025-02-19T07:10:32Z) - Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
We present a $textbfMA-OSMA$ algorithm to transfer the discrete submodular problem into a continuous optimization.<n>We also introduce a projection-free $textbfMA-OSEA$ algorithm, which effectively utilizes the KL divergence by mixing a uniform distribution.<n>Our algorithms significantly improve the $(frac11+c)$-approximation provided by the state-of-the-art OSG algorithm.
arXiv Detail & Related papers (2025-02-07T15:57:56Z) - PrivSGP-VR: Differentially Private Variance-Reduced Stochastic Gradient Push with Tight Utility Bounds [9.47030623916154]
We propose a differentially private decentralized learning method (termed PrivSGPVR) which employs gradient push with variance reduction and guarantees privacy for each node.
Our theoretical analysis shows that, under DP noise with constant variance, PrivGPS-VR achieves a sub-linear convergence rate of $mathcalO (1/sqrtnK)$.
arXiv Detail & Related papers (2024-05-04T11:22:53Z) - Improved Communication-Privacy Trade-offs in $L_2$ Mean Estimation under Streaming Differential Privacy [47.997934291881414]
Existing mean estimation schemes are usually optimized for $L_infty$ geometry and rely on random rotation or Kashin's representation to adapt to $L$ geometry.
We introduce a novel privacy accounting method for the sparsified Gaussian mechanism that incorporates the randomness inherent in sparsification into the DP.
Unlike previous approaches, our accounting algorithm directly operates in $L$ geometry, yielding MSEs that fast converge to those of the Gaussian mechanism.
arXiv Detail & Related papers (2024-05-02T03:48:47Z) - PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models [23.890454137522774]
We introduce Principal Singular values and Singular vectors Adaptation (PiSSA)<n>PiSSA shares the same architecture as LoRA, but initializes the adaptor matrices $A$ and $B$ with the principal components of the original matrix $W$, and put the remaining components into a residual matrix $Wres in mathbbRm times n$ which is frozen during fine-tuning.<n>Compared to LoRA, PiSSA updates the principal components while freezing the "residual" parts, allowing faster convergence and enhanced performance.
arXiv Detail & Related papers (2024-04-03T15:06:43Z) - Asymmetry in Low-Rank Adapters of Foundation Models [47.310550805920585]
This paper characterizes and leverages unexpected asymmetry in the importance of low-rank adapter matrices.
We show that fine-tuning $B$ is inherently more effective than fine-tuning $A$, and that a random untrained $A$ should perform nearly as well as a fine-tuned one.
arXiv Detail & Related papers (2024-02-26T18:59:12Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
Multilinear logistic regression serves as a powerful tool for the analysis of multidimensional data.
We propose an Accelerated Proximal Alternating Minim-MLSR model to solve the $ell_0$-MLSR.
We also demonstrate that APALM$+$ is globally convergent to a first-order critical point as well as to establish convergence by using the Kurdy-Lojasiewicz property.
arXiv Detail & Related papers (2023-09-17T11:05:08Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.