Disentangling Latent Shifts of In-Context Learning Through Self-Training
- URL: http://arxiv.org/abs/2410.01508v1
- Date: Wed, 2 Oct 2024 13:00:21 GMT
- Title: Disentangling Latent Shifts of In-Context Learning Through Self-Training
- Authors: Josip Jukić, Jan Šnajder,
- Abstract summary: We introduce STICL (Self-Training ICL), an approach that disentangles the latent shifts of demonstrations from the latent shift of the query through self-training.
STICL employs a teacher model to generate pseudo-labels and trains a student model using these labels, encoded in an adapter module.
Our empirical results show that STICL improves generalization and stability, consistently outperforming traditional ICL methods and other disentangling strategies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning (ICL) has become essential in natural language processing, particularly with autoregressive large language models capable of learning from demonstrations provided within the prompt. However, ICL faces challenges with stability and long contexts, especially as the number of demonstrations grows, leading to poor generalization and inefficient inference. To address these issues, we introduce STICL (Self-Training ICL), an approach that disentangles the latent shifts of demonstrations from the latent shift of the query through self-training. STICL employs a teacher model to generate pseudo-labels and trains a student model using these labels, encoded in an adapter module. The student model exhibits weak-to-strong generalization, progressively refining its predictions over time. Our empirical results show that STICL improves generalization and stability, consistently outperforming traditional ICL methods and other disentangling strategies across both in-domain and out-of-domain data.
Related papers
- Your Pretrained Model Tells the Difficulty Itself: A Self-Adaptive Curriculum Learning Paradigm for Natural Language Understanding [53.63482987410292]
We present a self-adaptive curriculum learning paradigm that prioritizes fine-tuning examples based on difficulty scores predicted by pre-trained language models.<n>We evaluate our method on four natural language understanding (NLU) datasets covering both binary and multi-class classification tasks.
arXiv Detail & Related papers (2025-07-13T19:36:17Z) - Surprise Calibration for Better In-Context Learning [6.566285172635043]
In-context learning (ICL) has emerged as a powerful paradigm for task adaptation in large language models.<n>Existing bias calibration methods apply fixed class priors across all inputs, limiting their efficacy in dynamic ICL settings.<n>We introduce a novel method-Surprise (SC), which captures the temporal dynamics of class priors.
arXiv Detail & Related papers (2025-06-15T10:04:42Z) - SALAD: Improving Robustness and Generalization through Contrastive Learning with Structure-Aware and LLM-Driven Augmented Data [15.366930934639838]
We propose SALAD, a novel approach to enhance model robustness and generalization.
Our method generates structure-aware and counterfactually augmented data for contrastive learning.
We validate our approach through experiments on three tasks: Sentiment Classification, Sexism Detection, and Natural Language Inference.
arXiv Detail & Related papers (2025-04-16T15:40:10Z) - Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling [37.36879079951306]
Large Language Models (LLMs) exhibit In-Context Learning (ICL)<n>ICL offers fast adaptation across natural language tasks and domains, but its emergence is less straightforward for modalities beyond text.<n>We identify exact token repetitions in the training data sequences as an important factor for ICL.<n>We unlock ICL capabilities for various visual datasets and a more challenging EEG classification task in a few-shot learning regime.
arXiv Detail & Related papers (2025-01-09T09:45:05Z) - Multimodal Contrastive In-Context Learning [0.9120312014267044]
This paper introduces a novel multimodal contrastive in-context learning framework to enhance our understanding of gradient-free in-context learning (ICL) in Large Language Models (LLMs)
First, we present a contrastive learning-based interpretation of ICL in real-world settings, marking the distance of the key-value representation as the differentiator in ICL.
Second, we develop an analytical framework to address biases in multimodal input formatting for real-world datasets.
Third, we propose an on-the-fly approach for ICL that demonstrates effectiveness in detecting hateful memes.
arXiv Detail & Related papers (2024-08-23T10:10:01Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL)
In this work, we first revisit the factors contributing to this variance from both data and model aspects, and find that the choice of demonstration is both data- and model-dependent.
We propose a data- and model-dependent demonstration selection method, textbfTopK + ConE, based on the assumption that textitthe performance of a demonstration positively correlates with its contribution to the model's understanding of the test samples.
arXiv Detail & Related papers (2024-01-22T16:25:27Z) - Test-Time Training for Semantic Segmentation with Output Contrastive
Loss [12.535720010867538]
Deep learning-based segmentation models have achieved impressive performance on public benchmarks, but generalizing well to unseen environments remains a major challenge.
This paper introduces Contrastive Loss (OCL), known for its capability to learn robust and generalized representations, to stabilize the adaptation process.
Our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.
arXiv Detail & Related papers (2023-11-14T03:13:47Z) - Improving Input-label Mapping with Demonstration Replay for In-context
Learning [67.57288926736923]
In-context learning (ICL) is an emerging capability of large autoregressive language models.
We propose a novel ICL method called Sliding Causal Attention (RdSca)
We show that our method significantly improves the input-label mapping in ICL demonstrations.
arXiv Detail & Related papers (2023-10-30T14:29:41Z) - Scaling In-Context Demonstrations with Structured Attention [75.41845145597875]
We propose a better architectural design for in-context learning.
Structured Attention for In-Context Learning replaces the full-attention by a structured attention mechanism.
We show that SAICL achieves comparable or better performance than full attention while obtaining up to 3.4x inference speed-up.
arXiv Detail & Related papers (2023-07-05T23:26:01Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.