論文の概要: InstaTrans: An Instruction-Aware Translation Framework for Non-English Instruction Datasets
- arxiv url: http://arxiv.org/abs/2410.01512v1
- Date: Wed, 2 Oct 2024 13:02:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 17:24:31.133147
- Title: InstaTrans: An Instruction-Aware Translation Framework for Non-English Instruction Datasets
- Title(参考訳): InstaTrans:ノンイングリッシュインストラクションデータセットのためのインストラクション対応翻訳フレームワーク
- Authors: Yungi Kim, Chanjun Park,
- Abstract要約: 末尾現象のため、英語以外の言語に対して高品質な命令データセットを生成することは困難である。
本稿では,既存の高品質な英語指導データセットを解として翻訳することを提案する。
InstaTransという命令データセットに適した新しい翻訳フレームワークを導入する。
- 参考スコア(独自算出の注目度): 2.530471185132544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is challenging to generate high-quality instruction datasets for non-English languages due to tail phenomena, which limit performance on less frequently observed data. To mitigate this issue, we propose translating existing high-quality English instruction datasets as a solution, emphasizing the need for complete and instruction-aware translations to maintain the inherent attributes of these datasets. We claim that fine-tuning LLMs with datasets translated in this way can improve their performance in the target language. To this end, we introduces a new translation framework tailored for instruction datasets, named InstaTrans (INSTruction-Aware TRANSlation). Through extensive experiments, we demonstrate the superiority of InstaTrans over other competitors in terms of completeness and instruction-awareness of translation, highlighting its potential to broaden the accessibility of LLMs across diverse languages at a relatively low cost. Furthermore, we have validated that fine-tuning LLMs with datasets translated by InstaTrans can effectively improve their performance in the target language.
- Abstract(参考訳): 少ない頻度で観測されるデータの性能を制限する尾の現象のために、英語以外の言語に対して高品質な命令データセットを生成することは困難である。
この問題を軽減するために、既存の高品質な英語の命令データセットをソリューションとして翻訳することを提案し、これらのデータセット固有の属性を維持するために、完全かつ命令対応の翻訳の必要性を強調した。
このような方法で翻訳されたデータセットによる微調整 LLM は、ターゲット言語における性能を向上させることができる、と我々は主張する。
そこで本研究では,InstaTrans (INSTruction-Aware Translation) という,命令データセットに適した新しい翻訳フレームワークを提案する。
広範な実験を通じて、翻訳の完全性や命令認識の点で、InstaTransが他社よりも優れていることを実証し、多様な言語にまたがるLLMのアクセシビリティを比較的低コストで拡張する可能性を強調した。
さらに,InstaTrans が翻訳したデータセットを用いた微調整 LLM がターゲット言語の性能を効果的に向上できることを確認した。
関連論文リスト
- Towards Cross-Lingual Explanation of Artwork in Large-scale Vision Language Models [28.716852515539497]
本研究では、機械翻訳に頼ることなく、複数の言語で拡張データセットを作成する。
リソース豊富な英語のインストラクションチューニングが、他の言語のパフォーマンスを向上させるかどうかを検討した。
論文 参考訳(メタデータ) (2024-09-03T03:42:56Z) - Improving Multilingual Instruction Finetuning via Linguistically Natural and Diverse Datasets [38.867815476721894]
ほとんどのインストラクションファインチューニング(IFT)データセットは、主に英語で書かれており、他の言語でのモデルパフォーマンスが制限されている。
多言語IFTデータセットを作成する従来の方法は、言語的ニュアンスを捕捉し、迅速な(指示)多様性を確保するのに苦労している。
本稿では,言語的自然性を維持し,迅速な多様性を保証する多言語IFTデータセットの収集手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T23:47:09Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
大規模言語モデル(LLM)は、様々な自然言語処理タスクでかなりの成功を収めている。
ニューラルネットワーク翻訳における最先端性能は,まだ達成できていない。
直接翻訳者ではなく,自動編集者 (APE) としてLLMを適用することを提案する。
論文 参考訳(メタデータ) (2023-10-23T12:22:15Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - ParroT: Translating during Chat using Large Language Models tuned with
Human Translation and Feedback [90.20262941911027]
ParroTはチャット中の翻訳機能を強化し、規制するフレームワークである。
具体的には、ParroTは、翻訳データを命令フォロースタイルに書き換える。
本稿では,ParroTモデルを微調整するための3つの命令タイプを提案する。
論文 参考訳(メタデータ) (2023-04-05T13:12:00Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
表現レベルと勾配レベルの両方でNMTモデルを正規化するための共同手法を提案する。
提案手法は,オフターゲット翻訳の発生率の低減とゼロショット翻訳性能の向上に有効であることを示す。
論文 参考訳(メタデータ) (2021-09-10T10:52:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。