論文の概要: Improving Multilingual Instruction Finetuning via Linguistically Natural and Diverse Datasets
- arxiv url: http://arxiv.org/abs/2407.01853v1
- Date: Mon, 1 Jul 2024 23:47:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 17:13:22.488345
- Title: Improving Multilingual Instruction Finetuning via Linguistically Natural and Diverse Datasets
- Title(参考訳): 言語学的自然・多言語データセットによる多言語指導の微調整の改善
- Authors: Sathish Reddy Indurthi, Wenxuan Zhou, Shamil Chollampatt, Ravi Agrawal, Kaiqiang Song, Lingxiao Zhao, Chenguang Zhu,
- Abstract要約: ほとんどのインストラクションファインチューニング(IFT)データセットは、主に英語で書かれており、他の言語でのモデルパフォーマンスが制限されている。
多言語IFTデータセットを作成する従来の方法は、言語的ニュアンスを捕捉し、迅速な(指示)多様性を確保するのに苦労している。
本稿では,言語的自然性を維持し,迅速な多様性を保証する多言語IFTデータセットの収集手法を提案する。
- 参考スコア(独自算出の注目度): 38.867815476721894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in Large Language Models (LLMs) have significantly enhanced instruction-following capabilities. However, most Instruction Fine-Tuning (IFT) datasets are predominantly in English, limiting model performance in other languages. Traditional methods for creating multilingual IFT datasets such as translating existing English IFT datasets or converting existing NLP datasets into IFT datasets by templating, struggle to capture linguistic nuances and ensure prompt (instruction) diversity. To address this issue, we propose a novel method for collecting multilingual IFT datasets that preserves linguistic naturalness and ensures prompt diversity. This approach leverages English-focused LLMs, monolingual corpora, and a scoring function to create high-quality, diversified IFT datasets in multiple languages. Experiments demonstrate that LLMs finetuned using these IFT datasets show notable improvements in both generative and discriminative tasks, indicating enhanced language comprehension by LLMs in non-English contexts. Specifically, on the multilingual summarization task, LLMs using our IFT dataset achieved 17.57% and 15.23% improvements over LLMs fine-tuned with translation-based and template-based datasets, respectively.
- Abstract(参考訳): LLM(Large Language Models)の進歩は、命令フォロー機能を大幅に強化した。
しかしながら、ほとんどのインストラクションファインチューニング(IFT)データセットは、主に英語で書かれており、他の言語でのモデル性能が制限されている。
既存の英語のIFTデータセットを翻訳したり、既存のNLPデータセットをIFTデータセットに変換するなど、多言語IFTデータセットを作成する従来の方法は、テンプレート化、言語のニュアンスを捉えるのに苦労し、迅速な(指示)多様性を確保する。
この問題に対処するために,言語的自然性を維持し,迅速な多様性を保証する多言語IFTデータセットの収集手法を提案する。
このアプローチでは、英語のLLM、単言語コーパス、スコア機能を活用して、複数の言語で高品質で多様化されたIFTデータセットを作成する。
実験により、これらのIFTデータセットを用いて微調整されたLLMは、生成的タスクと識別的タスクの両方において顕著な改善を示し、非英語文脈におけるLLMによる言語理解の強化を示す。
具体的には、多言語要約タスクにおいて、我々のIFTデータセットを使用したLLMは、翻訳ベースのデータセットとテンプレートベースのデータセットを微調整したLLMよりも17.57%と15.23%改善した。
関連論文リスト
- Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation [25.850573463743352]
大規模多言語事前訓練言語モデル(mPLMs)は、言語横断タスクにおいて優れた性能を発揮する。
しかし、mPLM内では異なる言語にまたがって大きな性能格差が存在する。
我々は ALSACE を導入し,優れた言語から学んだ知識を活用して,mPLM の低性能言語を誘導する。
論文 参考訳(メタデータ) (2024-04-12T14:19:16Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
既存の大きな言語モデルは、異なる言語間で異なる能力を示す。
本稿では,言語間のセマンティックアライメントを構築することで,英語以外の言語に事前学習したLLMを強化する。
論文 参考訳(メタデータ) (2023-08-09T13:32:06Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
複数の言語にまたがって英語データセットを転送するTranslation-trainパラダイムは、タスク固有の多言語モデルをトレーニングする上で重要な要素である。
本稿では,多言語意味解析の課題を考察し,英語データセットを複数言語に翻訳する大規模言語モデル(LLM)の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2022-10-13T19:34:14Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。