MiraGe: Editable 2D Images using Gaussian Splatting
- URL: http://arxiv.org/abs/2410.01521v2
- Date: Wed, 12 Feb 2025 07:22:41 GMT
- Title: MiraGe: Editable 2D Images using Gaussian Splatting
- Authors: Joanna Waczyńska, Tomasz Szczepanik, Piotr Borycki, Sławomir Tadeja, Thomas Bohné, Przemysław Spurek,
- Abstract summary: Implicit Neural Representations (INRs) approximate discrete data through continuous functions and are commonly used for encoding 2D images.
We introduce a novel method, MiraGe, which uses mirror reflections to perceive 2D images in 3D space and employs flat-controlled Gaussians for precise 2D image editing.
Our approach improves the rendering quality and allows realistic image modifications, including human-inspired perception of photos in the 3D world.
- Score: 0.0
- License:
- Abstract: Implicit Neural Representations (INRs) approximate discrete data through continuous functions and are commonly used for encoding 2D images. Traditional image-based INRs employ neural networks to map pixel coordinates to RGB values, capturing shapes, colors, and textures within the network's weights. Recently, GaussianImage has been proposed as an alternative, using Gaussian functions instead of neural networks to achieve comparable quality and compression. Such a solution obtains a quality and compression ratio similar to classical INR models but does not allow image modification. In contrast, our work introduces a novel method, MiraGe, which uses mirror reflections to perceive 2D images in 3D space and employs flat-controlled Gaussians for precise 2D image editing. Our approach improves the rendering quality and allows realistic image modifications, including human-inspired perception of photos in the 3D world. Thanks to modeling images in 3D space, we obtain the illusion of 3D-based modification in 2D images. We also show that our Gaussian representation can be easily combined with a physics engine to produce physics-based modification of 2D images. Consequently, MiraGe allows for better quality than the standard approach and natural modification of 2D images
Related papers
- MixedGaussianAvatar: Realistically and Geometrically Accurate Head Avatar via Mixed 2D-3D Gaussian Splatting [38.16397253003339]
Reconstructing high-fidelity 3D head avatars is crucial in various applications such as virtual reality.
Recent methods based on 3D Gaussian Splatting (3DGS) significantly improve the efficiency of training and rendering.
We propose a novel method named MixedGaussianAvatar for realistically and geometrically accurate head avatar reconstruction.
arXiv Detail & Related papers (2024-12-06T11:17:25Z) - ScalingGaussian: Enhancing 3D Content Creation with Generative Gaussian Splatting [30.99112626706754]
The creation of high-quality 3D assets is paramount for applications in digital heritage, entertainment, and robotics.
Traditionally, this process necessitates skilled professionals and specialized software for modeling.
We introduce a novel 3D content creation framework, which generates 3D textures efficiently.
arXiv Detail & Related papers (2024-07-26T18:26:01Z) - UV Gaussians: Joint Learning of Mesh Deformation and Gaussian Textures for Human Avatar Modeling [71.87807614875497]
We propose UV Gaussians, which models the 3D human body by jointly learning mesh deformations and 2D UV-space Gaussian textures.
We collect and process a new dataset of human motion, which includes multi-view images, scanned models, parametric model registration, and corresponding texture maps. Experimental results demonstrate that our method achieves state-of-the-art synthesis of novel view and novel pose.
arXiv Detail & Related papers (2024-03-18T09:03:56Z) - GOEmbed: Gradient Origin Embeddings for Representation Agnostic 3D Feature Learning [67.61509647032862]
We propose GOEmbed (Gradient Origin Embeddings) that encodes input 2D images into any 3D representation.
Unlike typical prior approaches in which input images are encoded using 2D features extracted from large pre-trained models, or customized features are designed to handle different 3D representations.
arXiv Detail & Related papers (2023-12-14T08:39:39Z) - Magic123: One Image to High-Quality 3D Object Generation Using Both 2D
and 3D Diffusion Priors [104.79392615848109]
We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes from a single unposed image.
In the first stage, we optimize a neural radiance field to produce a coarse geometry.
In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture.
arXiv Detail & Related papers (2023-06-30T17:59:08Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z) - GRAM-HD: 3D-Consistent Image Generation at High Resolution with
Generative Radiance Manifolds [28.660893916203747]
This paper proposes a novel 3D-aware GAN that can generate high resolution images (up to 1024X1024) while keeping strict 3D consistency as in volume rendering.
Our motivation is to achieve super-resolution directly in the 3D space to preserve 3D consistency.
Experiments on FFHQ and AFHQv2 datasets show that our method can produce high-quality 3D-consistent results.
arXiv Detail & Related papers (2022-06-15T02:35:51Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - Convolutional Generation of Textured 3D Meshes [34.20939983046376]
We propose a framework that can generate triangle meshes and associated high-resolution texture maps, using only 2D supervision from single-view natural images.
A key contribution of our work is the encoding of the mesh and texture as 2D representations, which are semantically aligned and can be easily modeled by a 2D convolutional GAN.
We demonstrate the efficacy of our method on Pascal3D+ Cars and CUB, both in an unconditional setting and in settings where the model is conditioned on class labels, attributes, and text.
arXiv Detail & Related papers (2020-06-13T15:23:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.