論文の概要: TiVaT: Joint-Axis Attention for Time Series Forecasting with Lead-Lag Dynamics
- arxiv url: http://arxiv.org/abs/2410.01531v1
- Date: Wed, 2 Oct 2024 13:24:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 17:14:45.679466
- Title: TiVaT: Joint-Axis Attention for Time Series Forecasting with Lead-Lag Dynamics
- Title(参考訳): TiVaT:リードラグダイナミクスを用いた時系列予測のための統合軸アテンション
- Authors: Junwoo Ha, Hyukjae Kwon, Sungsoo Kim, Kisu Lee, Ha Young Kim,
- Abstract要約: TiVaT(Time-Variable Transformer)は、時間と変数の依存関係を統合する新しいアーキテクチャである。
TiVaTは、さまざまなデータセットに対して、一貫して強力なパフォーマンスを提供する。
これによってTiVaTは、特に複雑で困難な依存関係を特徴とするデータセットの処理において、MTS予測の新しいベンチマークとして位置づけられる。
- 参考スコア(独自算出の注目度): 5.016178141636157
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate time series (MTS) forecasting plays a crucial role in various real-world applications, yet simultaneously capturing both temporal and inter-variable dependencies remains a challenge. Conventional Channel-Dependent (CD) models handle these dependencies separately, limiting their ability to model complex interactions such as lead-lag dynamics. To address these limitations, we propose TiVaT (Time-Variable Transformer), a novel architecture that integrates temporal and variate dependencies through its Joint-Axis (JA) attention mechanism. TiVaT's ability to capture intricate variate-temporal dependencies, including asynchronous interactions, is further enhanced by the incorporation of Distance-aware Time-Variable (DTV) Sampling, which reduces noise and improves accuracy through a learned 2D map that focuses on key interactions. TiVaT effectively models both temporal and variate dependencies, consistently delivering strong performance across diverse datasets. Notably, it excels in capturing complex patterns within multivariate time series, enabling it to surpass or remain competitive with state-of-the-art methods. This positions TiVaT as a new benchmark in MTS forecasting, particularly in handling datasets characterized by intricate and challenging dependencies.
- Abstract(参考訳): 多変量時系列(MTS)予測は、様々な実世界のアプリケーションにおいて重要な役割を果たすが、同時に時間的および変数間の依存関係をキャプチャすることは依然として課題である。
従来のChannel-Dependent(CD)モデルはこれらの依存関係を別々に扱い、リードラグのダイナミクスのような複雑な相互作用をモデル化する能力を制限する。
このような制約に対処するため,TyVaT (Time-Variable Transformer) を提案する。
TiVaTが非同期インタラクションを含む複雑な時間的依存関係をキャプチャする能力は、ノイズを低減し、キーインタラクションに焦点を当てた学習された2Dマップを通じて精度を向上させる、距離対応の時間可変サンプリング(DTV)の導入によってさらに強化される。
TiVaTは、時間的および変動的な依存関係の両方を効果的にモデル化し、さまざまなデータセット間で一貫して強力なパフォーマンスを提供する。
特に、多変量時系列内の複雑なパターンのキャプチャに優れており、最先端の手法に勝ったり、競合したりすることができる。
これによってTiVaTは、特に複雑で困難な依存関係を特徴とするデータセットの処理において、MTS予測の新しいベンチマークとして位置づけられる。
関連論文リスト
- UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
時系列予測(TSF)のための新しい適応型マルチスケール分解(AMD)フレームワークを提案する。
我々のフレームワークは時系列を複数のスケールで異なる時間パターンに分解し、MDM(Multi-Scale Decomposable Mixing)ブロックを活用する。
提案手法は,時間依存性とチャネル依存性の両方を効果的にモデル化し,マルチスケールデータ統合を改良するために自己相関を利用する。
論文 参考訳(メタデータ) (2024-06-06T05:27:33Z) - VCformer: Variable Correlation Transformer with Inherent Lagged Correlation for Multivariate Time Series Forecasting [1.5165632546654102]
本稿では,変数間の相関を抽出する可変相関変換器(VCformer)を提案する。
VCAはクエリとキー間の遅延に応じて、相互相関スコアを計算し、統合する。
クープマンダイナミクス理論にインスパイアされた我々は、時系列の非定常性を改善するために、クープマン時間検出器(KTD)を開発した。
論文 参考訳(メタデータ) (2024-05-19T07:39:22Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - FCDNet: Frequency-Guided Complementary Dependency Modeling for
Multivariate Time-Series Forecasting [9.083469629116784]
時系列予測のための簡潔で効果的なフレームワークであるFCDNetを提案する。
多レベル周波数パターンから長期的および短期的依存情報を適応的に抽出する。
実験の結果、FCDNetは強いベースラインをはるかに超えることがわかった。
論文 参考訳(メタデータ) (2023-12-27T07:29:52Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
完全時空間グラフニューラルネットワーク(FC-STGNN)という新しい手法を提案する。
グラフ構築のために、時間的距離に基づいて、すべてのタイムスタンプにセンサーを接続する減衰グラフを設計する。
グラフ畳み込みのために,移動プールGNN層を用いたFCグラフ畳み込みを考案し,ST依存性を効果的に把握し,効率的な表現を学習する。
論文 参考訳(メタデータ) (2023-09-11T08:44:07Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series
Forecasting [8.881348323807158]
上記の問題に対処するために,マルチスケール適応グラフニューラルネットワーク(MAGNN)を提案する。
4つの実世界のデータセットの実験では、MAGNNは様々な設定で最先端のメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-01-13T08:04:10Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
状態依存型と時間依存型の両方のスイッチングダイナミクスを識別できるフレキシブルモデルを提案する。
状態依存スイッチングは、リカレントな状態-スイッチ接続によって実現される。
時間依存スイッチング動作を改善するために、明示的な期間カウント変数が使用される。
論文 参考訳(メタデータ) (2021-10-26T17:35:21Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。