論文の概要: TiVaT: Joint-Axis Attention for Time Series Forecasting with Lead-Lag Dynamics
- arxiv url: http://arxiv.org/abs/2410.01531v1
- Date: Wed, 2 Oct 2024 13:24:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 17:14:45.679466
- Title: TiVaT: Joint-Axis Attention for Time Series Forecasting with Lead-Lag Dynamics
- Title(参考訳): TiVaT:リードラグダイナミクスを用いた時系列予測のための統合軸アテンション
- Authors: Junwoo Ha, Hyukjae Kwon, Sungsoo Kim, Kisu Lee, Ha Young Kim,
- Abstract要約: TiVaT(Time-Variable Transformer)は、時間と変数の依存関係を統合する新しいアーキテクチャである。
TiVaTは、さまざまなデータセットに対して、一貫して強力なパフォーマンスを提供する。
これによってTiVaTは、特に複雑で困難な依存関係を特徴とするデータセットの処理において、MTS予測の新しいベンチマークとして位置づけられる。
- 参考スコア(独自算出の注目度): 5.016178141636157
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate time series (MTS) forecasting plays a crucial role in various real-world applications, yet simultaneously capturing both temporal and inter-variable dependencies remains a challenge. Conventional Channel-Dependent (CD) models handle these dependencies separately, limiting their ability to model complex interactions such as lead-lag dynamics. To address these limitations, we propose TiVaT (Time-Variable Transformer), a novel architecture that integrates temporal and variate dependencies through its Joint-Axis (JA) attention mechanism. TiVaT's ability to capture intricate variate-temporal dependencies, including asynchronous interactions, is further enhanced by the incorporation of Distance-aware Time-Variable (DTV) Sampling, which reduces noise and improves accuracy through a learned 2D map that focuses on key interactions. TiVaT effectively models both temporal and variate dependencies, consistently delivering strong performance across diverse datasets. Notably, it excels in capturing complex patterns within multivariate time series, enabling it to surpass or remain competitive with state-of-the-art methods. This positions TiVaT as a new benchmark in MTS forecasting, particularly in handling datasets characterized by intricate and challenging dependencies.
- Abstract(参考訳): 多変量時系列(MTS)予測は、様々な実世界のアプリケーションにおいて重要な役割を果たすが、同時に時間的および変数間の依存関係をキャプチャすることは依然として課題である。
従来のChannel-Dependent(CD)モデルはこれらの依存関係を別々に扱い、リードラグのダイナミクスのような複雑な相互作用をモデル化する能力を制限する。
このような制約に対処するため,TyVaT (Time-Variable Transformer) を提案する。
TiVaTが非同期インタラクションを含む複雑な時間的依存関係をキャプチャする能力は、ノイズを低減し、キーインタラクションに焦点を当てた学習された2Dマップを通じて精度を向上させる、距離対応の時間可変サンプリング(DTV)の導入によってさらに強化される。
TiVaTは、時間的および変動的な依存関係の両方を効果的にモデル化し、さまざまなデータセット間で一貫して強力なパフォーマンスを提供する。
特に、多変量時系列内の複雑なパターンのキャプチャに優れており、最先端の手法に勝ったり、競合したりすることができる。
これによってTiVaTは、特に複雑で困難な依存関係を特徴とするデータセットの処理において、MTS予測の新しいベンチマークとして位置づけられる。
関連論文リスト
- TimeCNN: Refining Cross-Variable Interaction on Time Point for Time Series Forecasting [44.04862924157323]
トランスフォーマーベースのモデルは、クロスタイムとクロス変数の相互作用をモデル化する上で大きなポテンシャルを示す。
本稿では,時系列予測を強化するために,異種間相互作用を洗練するためのTimeCNNモデルを提案する。
12の実世界のデータセットで実施された大規模な実験は、TimeCNNが一貫して最先端のモデルを上回っていることを示している。
論文 参考訳(メタデータ) (2024-10-07T09:16:58Z) - TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
TimeDiTは時間依存性学習と確率的サンプリングを組み合わせた拡散トランスフォーマーモデルである。
TimeDiTは、さまざまなタスクにわたるトレーニングと推論プロセスを調和させるために、統一的なマスキングメカニズムを採用している。
我々の体系的評価は、ゼロショット/ファインチューニングによる予測と計算という基本的なタスクにおいて、TimeDiTの有効性を示す。
論文 参考訳(メタデータ) (2024-09-03T22:31:57Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - CATS: Enhancing Multivariate Time Series Forecasting by Constructing
Auxiliary Time Series as Exogenous Variables [9.95711569148527]
本稿では,2次元時間・コンテキストアテンション機構のように機能する補助時間系列(CATS)を構築する手法を提案する。
基本2層をコア予測器として用いながら、CATSは最先端を達成し、従来の多変量モデルと比較して複雑性とパラメータを著しく低減する。
論文 参考訳(メタデータ) (2024-03-04T01:52:40Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
既存の手法は、弱い時間的モデリング能力に制限されている。
この問題に対処するために、Decoupled Scoupled Framework (DeST)を提案する。
DeSTは計算量が少なく、現在の最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-10T09:11:39Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series
Forecasting [8.881348323807158]
上記の問題に対処するために,マルチスケール適応グラフニューラルネットワーク(MAGNN)を提案する。
4つの実世界のデータセットの実験では、MAGNNは様々な設定で最先端のメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-01-13T08:04:10Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
状態依存型と時間依存型の両方のスイッチングダイナミクスを識別できるフレキシブルモデルを提案する。
状態依存スイッチングは、リカレントな状態-スイッチ接続によって実現される。
時間依存スイッチング動作を改善するために、明示的な期間カウント変数が使用される。
論文 参考訳(メタデータ) (2021-10-26T17:35:21Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。