RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors
- URL: http://arxiv.org/abs/2506.22800v3
- Date: Fri, 25 Jul 2025 01:51:05 GMT
- Title: RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors
- Authors: Sicong Du, Jiarun Liu, Qifeng Chen, Hao-Xiang Chen, Tai-Jiang Mu, Sheng Yang,
- Abstract summary: RGE-GS is a novel expansive reconstruction framework that synergizes diffusion-based generation with reward-guided Gaussian integration.<n>We propose a reward network that learns to identify and prioritize consistently generated patterns prior to reconstruction phases.<n>During the reconstruction process, we devise a differentiated training strategy that automatically adjust Gaussian optimization progress according to scene converge metrics.
- Score: 54.81109375939306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A single-pass driving clip frequently results in incomplete scanning of the road structure, making reconstructed scene expanding a critical requirement for sensor simulators to effectively regress driving actions. Although contemporary 3D Gaussian Splatting (3DGS) techniques achieve remarkable reconstruction quality, their direct extension through the integration of diffusion priors often introduces cumulative physical inconsistencies and compromises training efficiency. To address these limitations, we present RGE-GS, a novel expansive reconstruction framework that synergizes diffusion-based generation with reward-guided Gaussian integration. The RGE-GS framework incorporates two key innovations: First, we propose a reward network that learns to identify and prioritize consistently generated patterns prior to reconstruction phases, thereby enabling selective retention of diffusion outputs for spatial stability. Second, during the reconstruction process, we devise a differentiated training strategy that automatically adjust Gaussian optimization progress according to scene converge metrics, which achieving better convergence than baseline methods. Extensive evaluations of publicly available datasets demonstrate that RGE-GS achieves state-of-the-art performance in reconstruction quality. Our source-code will be made publicly available at https://github.com/CN-ADLab/RGE-GS.
Related papers
- Decomposing Densification in Gaussian Splatting for Faster 3D Scene Reconstruction [5.929129351088044]
3D Gaussian Splatting (GS) has emerged as a powerful representation for high-quality scene reconstruction, offering compelling rendering quality.<n>We present a comprehensive analysis of the split and clone operations during the densification phase, revealing their roles in balancing detail preservation and computational efficiency.<n>We introduce an energy-guided coarse-to-fine multi-resolution training framework, which gradually increases resolution based on energy density in 2D images.
arXiv Detail & Related papers (2025-07-27T11:47:20Z) - Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting [4.082216579462796]
3D Gaussian Splatting has emerged as a powerful technique for novel view synthesis.<n>We propose Perceptual-GS, a novel framework that integrates perceptual sensitivity into the 3DGS training process.<n>We show that Perceptual-GS achieves state-of-the-art performance in reconstruction quality, efficiency, and robustness.
arXiv Detail & Related papers (2025-06-14T08:31:53Z) - Intern-GS: Vision Model Guided Sparse-View 3D Gaussian Splatting [95.61137026932062]
Intern-GS is a novel approach to enhance the process of sparse-view Gaussian splatting.<n>We show that Intern-GS achieves state-of-the-art rendering quality across diverse datasets.
arXiv Detail & Related papers (2025-05-27T05:17:49Z) - FreeSplat++: Generalizable 3D Gaussian Splatting for Efficient Indoor Scene Reconstruction [50.534213038479926]
FreeSplat++ is an alternative approach to large-scale indoor whole-scene reconstruction.<n>Our method with depth-regularized per-scene fine-tuning demonstrates substantial improvements in reconstruction accuracy and a notable reduction in training time.
arXiv Detail & Related papers (2025-03-29T06:22:08Z) - StreamGS: Online Generalizable Gaussian Splatting Reconstruction for Unposed Image Streams [32.91936079359693]
We propose StreamGS, an online generalizable 3DGS reconstruction method for unposed image streams.<n>StreamGS transforms image streams to 3D Gaussian streams by predicting and aggregating per-frame Gaussians.<n>Experiments on diverse datasets have demonstrated that StreamGS achieves quality on par with optimization-based approaches but does so 150 times faster.
arXiv Detail & Related papers (2025-03-08T14:35:39Z) - Evolving High-Quality Rendering and Reconstruction in a Unified Framework with Contribution-Adaptive Regularization [27.509109317973817]
3D Gaussian Splatting (3DGS) has garnered significant attention for its high-quality rendering and fast inference speed.<n>Previous methods primarily focus on geometry regularization, with common approaches including primitive-based and dual-model frameworks.<n>We propose CarGS, a unified model leveraging-adaptive regularization to achieve simultaneous, high-quality surface reconstruction.
arXiv Detail & Related papers (2025-03-02T12:51:38Z) - CrossView-GS: Cross-view Gaussian Splatting For Large-scale Scene Reconstruction [5.528874948395173]
We propose a novel cross-view Gaussian Splatting method for large-scale scene reconstruction based on multi-branch construction and fusion.<n>Our method achieves superior performance in novel view synthesis compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-01-03T08:24:59Z) - Radiant: Large-scale 3D Gaussian Rendering based on Hierarchical Framework [13.583584930991847]
We propose Radiant, a hierarchical 3DGS algorithm designed for large-scale scene reconstruction.<n>We show that Radiant improved reconstruction quality by up to 25.7% and reduced up to 79.6% end-to-end latency.
arXiv Detail & Related papers (2024-12-07T05:48:00Z) - DGTR: Distributed Gaussian Turbo-Reconstruction for Sparse-View Vast Scenes [81.56206845824572]
Novel-view synthesis (NVS) approaches play a critical role in vast scene reconstruction.
Few-shot methods often struggle with poor reconstruction quality in vast environments.
This paper presents DGTR, a novel distributed framework for efficient Gaussian reconstruction for sparse-view vast scenes.
arXiv Detail & Related papers (2024-11-19T07:51:44Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.<n>It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields [73.49548565633123]
Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering.
Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images.
We propose a view framework based on 3D Gaussian Splatting, named MCGS, enabling scene reconstruction from sparse input views.
arXiv Detail & Related papers (2024-10-15T08:39:05Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS) is an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings.
We introduce a level-based progressive training scheme, which incorporates explicit spatial regularization.
Our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity.
arXiv Detail & Related papers (2024-08-19T14:34:17Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.