論文の概要: Bayes' Power for Explaining In-Context Learning Generalizations
- arxiv url: http://arxiv.org/abs/2410.01565v1
- Date: Wed, 2 Oct 2024 14:01:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 17:04:38.408846
- Title: Bayes' Power for Explaining In-Context Learning Generalizations
- Title(参考訳): 文脈内学習の一般化を説明するベイズの力
- Authors: Samuel Müller, Noah Hollmann, Frank Hutter,
- Abstract要約: 本稿では、この時代のニューラルネットワークの振る舞いをより有用な解釈は、真の後部の近似であると論じる。
トレーニングデータから知識を効果的に構築することにより,モデルがコンテキスト内学習者に対して堅牢になることを示す。
- 参考スコア(独自算出の注目度): 46.17844703369127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditionally, neural network training has been primarily viewed as an approximation of maximum likelihood estimation (MLE). This interpretation originated in a time when training for multiple epochs on small datasets was common and performance was data bound; but it falls short in the era of large-scale single-epoch trainings ushered in by large self-supervised setups, like language models. In this new setup, performance is compute-bound, but data is readily available. As models became more powerful, in-context learning (ICL), i.e., learning in a single forward-pass based on the context, emerged as one of the dominant paradigms. In this paper, we argue that a more useful interpretation of neural network behavior in this era is as an approximation of the true posterior, as defined by the data-generating process. We demonstrate this interpretations' power for ICL and its usefulness to predict generalizations to previously unseen tasks. We show how models become robust in-context learners by effectively composing knowledge from their training data. We illustrate this with experiments that reveal surprising generalizations, all explicable through the exact posterior. Finally, we show the inherent constraints of the generalization capabilities of posteriors and the limitations of neural networks in approximating these posteriors.
- Abstract(参考訳): 伝統的に、ニューラルネットワークトレーニングは、主に最大推定(MLE)の近似と見なされてきた。
この解釈は、小さなデータセット上で複数のエポックのトレーニングが一般的で、パフォーマンスはデータバウンドであったのに始まりました。
この新しいセットアップでは、パフォーマンスは計算バウンドだが、データを容易に利用できる。
モデルがより強力になるにつれて、インコンテキスト学習(ICL、In-context Learning)、すなわちコンテキストに基づいた1つのフォワードパスでの学習が支配的なパラダイムの1つとして現れた。
本稿では、この時代のニューラルネットワークの振る舞いをより有用な解釈は、データ生成プロセスで定義される真の後部の近似であると論じる。
我々は、ICLに対するこの解釈のパワーと、以前に見つからなかったタスクの一般化を予測するのに有用であることを示す。
トレーニングデータから知識を効果的に構築することにより,モデルがコンテキスト内学習者に対して堅牢になることを示す。
我々はこれを、すべてが正確な後部を通して説明可能な、驚くべき一般化を示す実験で説明する。
最後に,後肢の一般化能力の制約と,後肢の近似におけるニューラルネットワークの制約について述べる。
関連論文リスト
- Simplicity Bias of Two-Layer Networks beyond Linearly Separable Data [4.14360329494344]
重みが小さい2層ニューラルネットワークの文脈における一般データセットの単純さバイアスを特徴付け、勾配流を訓練する。
XORのようなパターンを持つデータセットに対しては、学習した特徴を正確に識別し、後続のトレーニング段階で単純さのバイアスが強まることを示す。
これらの結果から,訓練中期に学習した特徴がOOD伝達に有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-27T16:00:45Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free
Ensembles of DNNs [9.010643838773477]
本稿では,検証データ上での深層モデルの忘れ度をモニタする,過剰適合度定量化のための新しいスコアを提案する。
オーバーフィットは検証精度を低下させることなく発生しうることを示し,従来よりも一般的である可能性が示唆された。
我々は,1つのネットワークのトレーニング履歴のみに基づいて,新たなアンサンブル法を構築するために,我々の観測結果を用いて,トレーニング時間に追加のコストを要さず,大幅な改善を実現する。
論文 参考訳(メタデータ) (2023-10-17T09:22:22Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
我々は、ディープニューラルネットワーク(DNN)のためのオンライン学習パラダイムであるLearning, Unlearn, and Relearn(LURE)を紹介する。
LUREは、モデルの望ましくない情報を選択的に忘れる未学習フェーズと、一般化可能な特徴の学習を強調する再学習フェーズとを交換する。
トレーニングパラダイムは、分類と少数ショット設定の両方において、データセット間で一貫したパフォーマンス向上を提供します。
論文 参考訳(メタデータ) (2023-03-18T16:45:54Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Harnessing the Power of Explanations for Incremental Training: A
LIME-Based Approach [6.244905619201076]
この研究では、モデル説明がフィードフォワードトレーニングにフィードバックされ、モデルをより一般化するのに役立つ。
このフレームワークは、シーケンシャルなテストセットのパフォーマンスを維持するために、Elastic Weight Consolidation (EWC)によるカスタム重み付き損失を取り入れている。
提案したカスタムトレーニング手順は、インクリメンタルラーニングセットアップのすべてのフェーズにおいて、0.5%から1.5%までの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2022-11-02T18:16:17Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。