論文の概要: A Novel Framework of Horizontal-Vertical Hybrid Federated Learning for EdgeIoT
- arxiv url: http://arxiv.org/abs/2410.01644v1
- Date: Wed, 2 Oct 2024 15:13:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 16:23:10.135441
- Title: A Novel Framework of Horizontal-Vertical Hybrid Federated Learning for EdgeIoT
- Title(参考訳): EdgeIoTのための水平-垂直ハイブリッドフェデレーション学習フレームワーク
- Authors: Kai Li, Yilei Liang, Xin Yuan, Wei Ni, Jon Crowcroft, Chau Yuen, Ozgur B. Akan,
- Abstract要約: このレターでは、モバイルエッジコンピューティング対応モノのインターネット(Edge IoT)のためのハイブリッド水平-垂直連合学習(HoVeFL)が紹介されている。
特定のEdgeIoTデバイスは、同じデータサンプルを使用してローカルモデルをトレーニングするが、異なるデータ機能を分析する。
提案したHoVeFLは、グローバル損失関数を最小限に抑えるために、局所モデルとグローバルモデルのトレーニングを定式化している。
- 参考スコア(独自算出の注目度): 32.56151652198019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices.
- Abstract(参考訳): このレターでは、モバイルエッジコンピューティング対応モノのインターネット(Edge IoT)のための、新しいハイブリッド水平-垂直連合学習(HoVeFL)が紹介されている。
このフレームワークでは、一部のEdgeIoTデバイスは、同じデータサンプルを使用してローカルモデルをトレーニングするが、異なるデータ機能を分析する。
したがって、データ機能は一貫性があるにもかかわらず、データサンプルはデバイスによって異なる。
提案したHoVeFLは、グローバル損失関数を最小限に抑えるために、局所モデルとグローバルモデルのトレーニングを定式化している。
CIFAR-10とSVHNデータセットのパフォーマンス評価により、水平FLデバイス12台と垂直FLデバイス6台によるHoVeFLのテスト損失は、水平FLデバイス6台と垂直FLデバイス12台と比較してそれぞれ5.5%と25.2%高いことがわかった。
関連論文リスト
- Enhancing Federated Learning Convergence with Dynamic Data Queue and Data Entropy-driven Participant Selection [13.825031686864559]
Federated Learning(FL)は、エッジデバイス上でのコラボレーティブモデルトレーニングのための分散アプローチである。
本稿では,サーバ上のデータのグローバルサブセットを作成し,デバイス間で動的に分散することにより,FLの収束を改善する手法を提案する。
提案手法により,MNISTデータセットでは約5%,CIFAR-10では約18%,CIFAR-100では約20%の精度向上を実現した。
論文 参考訳(メタデータ) (2024-10-23T11:47:04Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - VertiBench: Advancing Feature Distribution Diversity in Vertical
Federated Learning Benchmarks [31.08004805380727]
本稿では,VFLの性能に影響を及ぼす2つの要因について紹介する。
また、画像イメージのVFLシナリオの欠点に対応するために、実際のVFLデータセットも導入する。
論文 参考訳(メタデータ) (2023-07-05T05:55:08Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL)は、ローカルデータをアップロードすることなく、分散クライアントと協調して高品質なモデルをトレーニングすることを目的としている。
FL研究と実世界のシナリオの間には依然としてかなりのギャップがあり、主に異種デバイスの特徴とそのスケールによって引き起こされている。
本稿では,実世界横断デバイスFL,FS-Realのための効率的でスケーラブルなプロトタイピングシステムを提案する。
論文 参考訳(メタデータ) (2023-03-23T15:37:17Z) - Vertical Federated Learning: A Structured Literature Review [0.0]
フェデレートラーニング(FL)は、データプライバシのメリットを付加した、有望な分散ラーニングパラダイムとして登場した。
本稿では,VFLにおける最先端のアプローチを論じる構造化文献レビューを行う。
論文 参考訳(メタデータ) (2022-12-01T16:16:41Z) - Enhancing Efficiency in Multidevice Federated Learning through Data Selection [11.67484476827617]
マルチデバイス環境におけるフェデレーション学習(FL)は、膨大な量のプライベートデータから学習する新たな機会を生み出す。
本稿では、デバイス上のデータ選択を制約されたデバイスに組み込むためのFLフレームワークを開発する。
我々のフレームワークは,実装戦略のないベースラインFLと比較して,19%の精度,58%のレイテンシを実現している。
論文 参考訳(メタデータ) (2022-11-08T11:39:17Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning(FL)は、センシティブなデータを保持している複数のクライアントが協力して機械学習モデルをトレーニングできる新しいアプローチである。
本稿では,医療分野に重点を置くクロスサイロ・データセット・スイートFLambyを提案し,クロスサイロ・FLの理論と実践のギャップを埋める。
私たちのフレキシブルでモジュラーなスイートによって、研究者は簡単にデータセットをダウンロードし、結果を再現し、研究のためにさまざまなコンポーネントを再利用することができます。
論文 参考訳(メタデータ) (2022-10-10T12:17:30Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。