Towards a vision foundation model for comprehensive assessment of Cardiac MRI
- URL: http://arxiv.org/abs/2410.01665v2
- Date: Sun, 6 Oct 2024 22:28:20 GMT
- Title: Towards a vision foundation model for comprehensive assessment of Cardiac MRI
- Authors: Athira J Jacob, Indraneel Borgohain, Teodora Chitiboi, Puneet Sharma, Dorin Comaniciu, Daniel Rueckert,
- Abstract summary: We introduce a vision foundation model trained for cardiac magnetic resonance imaging (CMR) assessment.
We finetune the model in supervised way for 9 clinical tasks typical to a CMR workflow.
We demonstrate improved accuracy and robustness across all tasks, over a range of available labeled dataset sizes.
- Score: 11.838157772803282
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiac magnetic resonance imaging (CMR), considered the gold standard for noninvasive cardiac assessment, is a diverse and complex modality requiring a wide variety of image processing tasks for comprehensive assessment of cardiac morphology and function. Advances in deep learning have enabled the development of state-of-the-art (SoTA) models for these tasks. However, model training is challenging due to data and label scarcity, especially in the less common imaging sequences. Moreover, each model is often trained for a specific task, with no connection between related tasks. In this work, we introduce a vision foundation model trained for CMR assessment, that is trained in a self-supervised fashion on 36 million CMR images. We then finetune the model in supervised way for 9 clinical tasks typical to a CMR workflow, across classification, segmentation, landmark localization, and pathology detection. We demonstrate improved accuracy and robustness across all tasks, over a range of available labeled dataset sizes. We also demonstrate improved few-shot learning with fewer labeled samples, a common challenge in medical image analyses. We achieve an out-of-box performance comparable to SoTA for most clinical tasks. The proposed method thus presents a resource-efficient, unified framework for CMR assessment, with the potential to accelerate the development of deep learning-based solutions for image analysis tasks, even with few annotated data available.
Related papers
- DiCoM -- Diverse Concept Modeling towards Enhancing Generalizability in Chest X-Ray Studies [6.83819481805979]
Chest X-Ray (CXR) is a widely used clinical imaging modality.
Self-supervised pre-training has proven to outperform supervised pre-training in numerous downstream vision tasks.
We introduce Diverse Concept Modeling (DiCoM), a novel self-supervised training paradigm.
arXiv Detail & Related papers (2024-02-22T20:51:37Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Multimodal Representation Learning of Cardiovascular Magnetic Resonance
Imaging [11.887706872979697]
We propose textbfCMRformer, a multimodal learning framework to jointly learn sequences of CMR images and associated cardiologist's reports.
Our work could potentially expedite progress in the CMR study and lead to more accurate and effective diagnosis and treatment.
arXiv Detail & Related papers (2023-04-16T02:35:27Z) - Self-supervised Learning from 100 Million Medical Images [13.958840691105992]
We propose a method for self-supervised learning of rich image features based on contrastive learning and online feature clustering.
We leverage large training datasets of over 100,000,000 medical images of various modalities, including radiography, computed tomography (CT), magnetic resonance (MR) imaging and ultrasonography.
We highlight a number of advantages of this strategy on challenging image assessment problems in radiography, CT and MR.
arXiv Detail & Related papers (2022-01-04T18:27:04Z) - A Multi-Task Cross-Task Learning Architecture for Ad-hoc Uncertainty
Estimation in 3D Cardiac MRI Image Segmentation [0.0]
We present a Multi-task Cross-task learning consistency approach to enforce the correlation between the pixel-level (segmentation) and the geometric-level (distance map) tasks.
Our study further showcases the potential of our model to flag low-quality segmentation from a given model.
arXiv Detail & Related papers (2021-09-16T03:53:24Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Domain Generalization on Medical Imaging Classification using Episodic
Training with Task Augmentation [62.49837463676111]
We propose a novel scheme of episodic training with task augmentation on medical imaging classification.
Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting.
arXiv Detail & Related papers (2021-06-13T03:56:59Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.