Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging
- URL: http://arxiv.org/abs/2503.19005v1
- Date: Mon, 24 Mar 2025 14:47:54 GMT
- Title: Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging
- Authors: Abdul Qayyum, Moona Mazher, Devran Ugurlu, Jose Alonso Solis Lemus, Cristobal Rodero, Steven A Niederer,
- Abstract summary: Whole-heart segmentation from CT and MRI scans is crucial for cardiovascular disease analysis.<n>Existing methods struggle with modality-specific biases and the need for extensive labeled datasets.<n>We propose a foundation model for whole-heart segmentation using a self-supervised learning framework based on a student-teacher architecture.
- Score: 0.510750648708198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Whole-heart segmentation from CT and MRI scans is crucial for cardiovascular disease analysis, yet existing methods struggle with modality-specific biases and the need for extensive labeled datasets. To address these challenges, we propose a foundation model for whole-heart segmentation using a self-supervised learning (SSL) framework based on a student-teacher architecture. Our model is pretrained on a large, unlabeled dataset of CT and MRI scans, leveraging the xLSTM backbone to capture long-range spatial dependencies and complex anatomical structures in 3D medical images. By incorporating multi-modal pretraining, our approach ensures strong generalization across both CT and MRI modalities, mitigating modality-specific variations and improving segmentation accuracy in diverse clinical settings. The use of large-scale unlabeled data significantly reduces the dependency on manual annotations, enabling robust performance even with limited labeled data. We further introduce an xLSTM-UNet-based architecture for downstream whole-heart segmentation tasks, demonstrating its effectiveness on few-label CT and MRI datasets. Our results validate the robustness and adaptability of the proposed model, highlighting its potential for advancing automated whole-heart segmentation in medical imaging.
Related papers
- Multi-encoder nnU-Net outperforms Transformer models with self-supervised pretraining [0.0]
This study addresses the essential task of medical image segmentation, which involves the automatic identification and delineation of anatomical structures and pathological regions in medical images.
We propose a novel self-supervised learning Multi-encoder nnU-Net architecture designed to process multiple MRI modalities independently through separate encoders.
Our Multi-encoder nnU-Net demonstrates exceptional performance, achieving a Dice Similarity Coefficient (DSC) of 93.72%, which surpasses that of other models such as vanilla nnU-Net, SegResNet, and Swin UNETR.
arXiv Detail & Related papers (2025-04-04T14:31:06Z) - IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration [0.46904601975060667]
IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration) is a novel similarity metric designed for robust multimodal image registration.
It defines a semantic similarity measure based on the comparison of deep features extracted from large-scale pretrained segmentation models.
It was evaluated on five challenging 3D registration tasks involving thoracic CT/CBCT and pelvic MR/CT datasets.
arXiv Detail & Related papers (2025-03-31T14:08:21Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.<n>We propose a novel continual learning-driven CT model that can segment complete anatomies.<n>Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - Towards a vision foundation model for comprehensive assessment of Cardiac MRI [11.838157772803282]
We introduce a vision foundation model trained for cardiac magnetic resonance imaging (CMR) assessment.
We finetune the model in supervised way for 9 clinical tasks typical to a CMR workflow.
We demonstrate improved accuracy and robustness across all tasks, over a range of available labeled dataset sizes.
arXiv Detail & Related papers (2024-10-02T15:32:01Z) - MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep
Models for X-ray Images of Multiple Body Parts [63.30352394004674]
Multi-task Self-super-vised Continual Learning (MUSCLE) is a novel self-supervised pre-training pipeline for medical imaging tasks.
MUSCLE aggregates X-rays collected from multiple body parts for representation learning, and adopts a well-designed continual learning procedure.
We evaluate MUSCLE using 9 real-world X-ray datasets with various tasks, including pneumonia classification, skeletal abnormality classification, lung segmentation, and tuberculosis (TB) detection.
arXiv Detail & Related papers (2023-10-03T12:19:19Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Studying Robustness of Semantic Segmentation under Domain Shift in
cardiac MRI [0.8858288982748155]
We study challenges and opportunities of domain transfer across images from multiple clinical centres and scanner vendors.
In this work, we build upon a fixed U-Net architecture configured by the nnU-net framework to investigate various data augmentation techniques and batch normalization layers.
arXiv Detail & Related papers (2020-11-15T17:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.