論文の概要: Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding
- arxiv url: http://arxiv.org/abs/2410.01699v1
- Date: Wed, 2 Oct 2024 16:05:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 15:53:34.151078
- Title: Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding
- Title(参考訳): 訓練不要な投機的ヤコビ復号による自動回帰テキスト・画像生成の高速化
- Authors: Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, Xihui Liu,
- Abstract要約: 本稿では,自動回帰テキスト・画像生成を高速化するために,訓練不要な確率的並列デコーディングアルゴリズムであるSpeculative Jacobi Decoding (SJD)を提案する。
確率収束基準を導入することにより、サンプリングベースのトークン復号におけるランダム性を維持しつつ、自動回帰テキスト・画像生成の推論を高速化する。
- 参考スコア(独自算出の注目度): 60.188309982690335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current large auto-regressive models can generate high-quality, high-resolution images, but these models require hundreds or even thousands of steps of next-token prediction during inference, resulting in substantial time consumption. In existing studies, Jacobi decoding, an iterative parallel decoding algorithm, has been used to accelerate the auto-regressive generation and can be executed without training. However, the Jacobi decoding relies on a deterministic criterion to determine the convergence of iterations. Thus, it works for greedy decoding but is incompatible with sampling-based decoding which is crucial for visual quality and diversity in the current auto-regressive text-to-image generation. In this paper, we propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation. By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding and allowing the model to generate diverse images. Specifically, SJD facilitates the model to predict multiple tokens at each step and accepts tokens based on the probabilistic criterion, enabling the model to generate images with fewer steps than the conventional next-token-prediction paradigm. We also investigate the token initialization strategies that leverage the spatial locality of visual data to further improve the acceleration ratio under specific scenarios. We conduct experiments for our proposed SJD on multiple auto-regressive text-to-image generation models, showing the effectiveness of model acceleration without sacrificing the visual quality.
- Abstract(参考訳): 現在の大規模な自動回帰モデルは、高品質で高解像度の画像を生成することができるが、これらのモデルは推論中に数百から数千の次の予測ステップを必要とするため、相当な時間消費をもたらす。
既存の研究では、反復並列復号アルゴリズムであるJacovi decodingが自動回帰生成を加速するために使われており、訓練なしで実行できる。
しかし、ジャコビ復号法は反復の収束を決定するために決定論的基準に依存する。
したがって、これはgreedy復号には有効であるが、現在の自動回帰テキスト・画像生成において視覚的品質と多様性に不可欠なサンプリングベース復号とは相容れない。
本稿では,自動回帰テキスト・画像生成を高速化するために,訓練不要な確率的並列デコーディングアルゴリズムであるSpeculative Jacobi Decoding (SJD)を提案する。
確率収束基準を導入することで、SJDはサンプリングベースのトークン復号におけるランダム性を保ちながら、自動回帰テキスト・画像生成の推論を加速し、モデルが多様な画像を生成することができる。
具体的には、SJDは各ステップで複数のトークンを予測し、確率的基準に基づいてトークンを受け付け、従来の次世代予測パラダイムよりも少ないステップで画像を生成することができる。
また,視覚データの空間的局所性を活用するトークン初期化戦略について検討し,特定のシナリオ下での加速度比をさらに向上させる。
本稿では,複数の自動回帰テキスト・画像生成モデルを用いたSJD実験を行い,視覚的品質を犠牲にすることなく,モデルアクセラレーションの有効性を示す。
関連論文リスト
- Randomized Autoregressive Visual Generation [26.195148077398223]
本稿では,視覚生成のためのランダム化自己回帰モデリング(RAR)を提案する。
RARは、言語モデリングフレームワークとの完全な互換性を維持しながら、画像生成タスクに最先端のパフォーマンスを新たに設定する。
ImageNet-256ベンチマークでは、RARはFIDスコアが1.48に達し、最先端の自己回帰画像生成装置に勝るだけでなく、拡散ベースおよびマスク付きトランスフォーマーベースの手法よりも優れている。
論文 参考訳(メタデータ) (2024-11-01T17:59:58Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
本稿では,MMAR(Multi-Modal Auto-Regressive)確率モデルフレームワークを提案する。
離散化の手法とは異なり、MMARは情報損失を避けるために連続的に評価された画像トークンを取り入れる。
MMARは他のジョイントマルチモーダルモデルよりもはるかに優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T17:57:18Z) - Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.06970466554273]
SDXLのような最先端拡散モデルに匹敵するレベルまで、非自己回帰マスク型画像モデリング(MIM)のテキスト・ツー・イメージが増大するMeissonicを提案する。
高品質なトレーニングデータを活用し、人間の嗜好スコアから得られるマイクロ条件を統合し、特徴圧縮層を用いて画像の忠実度と解像度をさらに向上する。
我々のモデルは、高画質の高精細画像を生成する際に、SDXLのような既存のモデルに適合するだけでなく、しばしば性能を上回ります。
論文 参考訳(メタデータ) (2024-10-10T17:59:17Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
実験により,提案手法が投機的復号化よりも大幅に高速化されたことを示す。
LANTERNは、greedyデコーディングやランダムサンプリングと比較して、$mathbf1.75times$と$mathbf1.76times$のスピードアップを増大させる。
論文 参考訳(メタデータ) (2024-10-04T12:21:03Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Text-Conditioned Sampling Framework for Text-to-Image Generation with
Masked Generative Models [52.29800567587504]
そこで本研究では,テキスト情報を用いた局所的監視により最適なトークンを選択するための,学習可能なサンプリングモデルであるテキスト定義トークン選択(TCTS)を提案する。
TCTSは画像の品質だけでなく、生成された画像と与えられたテキストのセマンティックアライメントも改善する。
我々は、周波数適応サンプリング(FAS)と様々な生成タスクを組み合わせたTCTSの有効性を検証し、画像テキストのアライメントや画質において、ベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2023-04-04T03:52:49Z) - Progressive Text-to-Image Generation [40.09326229583334]
本稿では,高忠実度テキスト・画像生成のためのプログレッシブモデルを提案する。
提案手法は, 既存のコンテキストに基づいて, 粗い画像から細かな画像への新しい画像トークンの作成によって効果を発揮する。
結果として得られた粗大な階層構造により、画像生成プロセスは直感的で解釈可能である。
論文 参考訳(メタデータ) (2022-10-05T14:27:20Z) - Semi-Autoregressive Image Captioning [153.9658053662605]
画像キャプションに対する現在の最先端のアプローチは、通常自己回帰的手法を採用する。
連続的反復改善による非自己回帰画像キャプションは、かなりの加速を伴う自己回帰画像キャプションに匹敵する性能が得られる。
本稿では,性能と速度のトレードオフを改善するために,SAIC(Semi-Autoregressive Image Captioning)と呼ばれる新しい2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-11T15:11:54Z) - Non-Autoregressive Image Captioning with Counterfactuals-Critical
Multi-Agent Learning [46.060954649681385]
新たな訓練パラダイムを持つ非自己回帰的画像キャプションモデル: 対実的クリティカルなマルチエージェント学習(CMAL)を提案する。
我々のNAICモデルは、最先端の自己回帰モデルに匹敵する性能を達成し、13.9倍のデコードスピードアップを実現している。
論文 参考訳(メタデータ) (2020-05-10T15:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。