論文の概要: Frequency Autoregressive Image Generation with Continuous Tokens
- arxiv url: http://arxiv.org/abs/2503.05305v1
- Date: Fri, 07 Mar 2025 10:34:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:24:00.629014
- Title: Frequency Autoregressive Image Generation with Continuous Tokens
- Title(参考訳): 連続トークンを用いた周波数自己回帰画像生成
- Authors: Hu Yu, Hao Luo, Hangjie Yuan, Yu Rong, Feng Zhao,
- Abstract要約: 本稿では、周波数プログレッシブ自己回帰(textbfFAR)パラダイムを導入し、連続トークン化器を用いてFARをインスタンス化する。
我々は、ImageNetデータセットの総合的な実験を通して、FARの有効性を実証する。
- 参考スコア(独自算出の注目度): 31.833852108014312
- License:
- Abstract: Autoregressive (AR) models for image generation typically adopt a two-stage paradigm of vector quantization and raster-scan ``next-token prediction", inspired by its great success in language modeling. However, due to the huge modality gap, image autoregressive models may require a systematic reevaluation from two perspectives: tokenizer format and regression direction. In this paper, we introduce the frequency progressive autoregressive (\textbf{FAR}) paradigm and instantiate FAR with the continuous tokenizer. Specifically, we identify spectral dependency as the desirable regression direction for FAR, wherein higher-frequency components build upon the lower one to progressively construct a complete image. This design seamlessly fits the causality requirement for autoregressive models and preserves the unique spatial locality of image data. Besides, we delve into the integration of FAR and the continuous tokenizer, introducing a series of techniques to address optimization challenges and improve the efficiency of training and inference processes. We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset and verify its potential on text-to-image generation.
- Abstract(参考訳): 画像生成のための自己回帰(AR)モデルは典型的にはベクトル量子化の2段階のパラダイムと、言語モデリングにおける大きな成功に触発されたラスタースキャン ``next-token prediction' を取り入れている。
しかし、モダリティの差が大きいため、画像自己回帰モデルはトークン化形式と回帰方向という2つの観点から体系的に再評価する必要がある。
本稿では、周波数プログレッシブ自己回帰(\textbf{FAR})パラダイムを導入し、FARを連続トークン化器でインスタンス化する。
具体的には、スペクトル依存性をFARの望ましい回帰方向とみなし、高周波数成分が下位の成分の上に構築され、段階的に完全な画像を構築する。
この設計は自己回帰モデルの因果性要件をシームレスに適合させ、画像データの一意な空間的局所性を保存する。
さらに、FARと継続的トークン化ツールの統合を掘り下げ、最適化の課題に対処し、トレーニングと推論プロセスの効率を改善する一連のテクニックを導入しました。
我々は、ImageNetデータセットの総合的な実験を通してFARの有効性を実証し、テキスト・画像生成におけるその可能性を検証する。
関連論文リスト
- Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
次世代の予測モデルとして, ISRフレームワークの視覚的自己回帰モデルを提案する。
大規模データを収集し、ロバストな生成先行情報を得るためのトレーニングプロセスを設計する。
論文 参考訳(メタデータ) (2025-01-31T09:53:47Z) - FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching [34.112157859384645]
本稿では,合理化スケール設計を特徴とする次世代のスケール予測手法であるFlowARを紹介する。
これにより、VARの複雑なマルチスケール残留トークン化器が不要になる。
課題であるImageNet-256ベンチマークにおけるFlowARの有効性を検証する。
論文 参考訳(メタデータ) (2024-12-19T18:59:31Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
遅延ベース画像生成モデルは、画像生成タスクにおいて顕著な成功を収めた。
同じ遅延空間を共有するにもかかわらず、自己回帰モデルは画像生成において LDM や MIM よりもかなり遅れている。
本稿では,画像生成モデルのための遅延空間を安定化する,単純だが効果的な離散画像トークン化手法を提案する。
論文 参考訳(メタデータ) (2024-10-16T12:13:17Z) - Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding [60.188309982690335]
本稿では,SJD (Speculative Jacobi Decoding) の学習自由確率並列復号法を提案する。
SJDは、サンプリングベースのトークン復号におけるランダム性を維持しつつ、自動回帰テキスト・画像生成の推論を加速する。
具体的には、SJDは各ステップで複数のトークンを予測し、確率的基準に基づいてトークンを受け付けます。
論文 参考訳(メタデータ) (2024-10-02T16:05:27Z) - Improving Diffusion-Based Image Synthesis with Context Prediction [49.186366441954846]
既存の拡散モデルは、主に、劣化した画像から空間軸に沿って画素幅または特徴幅の制約で入力画像を再構成しようとする。
文脈予測を用いて拡散に基づく画像合成を改善するためのConPreDiffを提案する。
我々のConPreDiffは従来手法を一貫して上回り、ゼロショットFIDスコア6.21で、MS-COCO上で新たなSOTAテキスト・画像生成結果を達成する。
論文 参考訳(メタデータ) (2024-01-04T01:10:56Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Progressive Text-to-Image Generation [40.09326229583334]
本稿では,高忠実度テキスト・画像生成のためのプログレッシブモデルを提案する。
提案手法は, 既存のコンテキストに基づいて, 粗い画像から細かな画像への新しい画像トークンの作成によって効果を発揮する。
結果として得られた粗大な階層構造により、画像生成プロセスは直感的で解釈可能である。
論文 参考訳(メタデータ) (2022-10-05T14:27:20Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
本稿では,条件付き画像生成のための多目的フレームワークを提案する。
CNNの帰納バイアスと自己回帰の強力なシーケンスモデリングが組み込まれている。
提案手法は,最先端技術と比較して,優れた多彩な画像生成性能を実現する。
論文 参考訳(メタデータ) (2022-07-21T22:19:17Z) - Global Context with Discrete Diffusion in Vector Quantised Modelling for
Image Generation [19.156223720614186]
ベクトル量子変分オートエンコーダと自己回帰モデルとを生成部として統合することにより、画像生成における高品質な結果が得られる。
本稿では,VQ-VAEからのコンテンツリッチな離散視覚コードブックの助けを借りて,この離散拡散モデルにより,グローバルな文脈で高忠実度画像を生成することができることを示す。
論文 参考訳(メタデータ) (2021-12-03T09:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。