論文の概要: Performant, Memory Efficient and Scalable Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2410.01706v1
- Date: Wed, 2 Oct 2024 16:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 15:53:34.143010
- Title: Performant, Memory Efficient and Scalable Multi-Agent Reinforcement Learning
- Title(参考訳): 高性能, メモリ効率, スケーラブルなマルチエージェント強化学習
- Authors: Omayma Mahjoub, Sasha Abramowitz, Ruan de Kock, Wiem Khlifi, Simon du Toit, Jemma Daniel, Louay Ben Nessir, Louise Beyers, Claude Formanek, Liam Clark, Arnu Pretorius,
- Abstract要約: Sableは、Retentive NetworksからMARLへの保持機構を適応させる新しいアルゴリズムである。
Sableは、タスクの大部分で既存の最先端メソッドを大幅に上回る。
- 参考スコア(独自算出の注目度): 3.676220008456203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the field of multi-agent reinforcement learning (MARL) progresses towards larger and more complex environments, achieving strong performance while maintaining memory efficiency and scalability to many agents becomes increasingly important. Although recent research has led to several advanced algorithms, to date, none fully address all of these key properties simultaneously. In this work, we introduce Sable, a novel and theoretically sound algorithm that adapts the retention mechanism from Retentive Networks to MARL. Sable's retention-based sequence modelling architecture allows for computationally efficient scaling to a large number of agents, as well as maintaining a long temporal context, making it well-suited for large-scale partially observable environments. Through extensive evaluations across six diverse environments, we demonstrate how Sable is able to significantly outperform existing state-of-the-art methods in the majority of tasks (34 out of 45, roughly 75\%). Furthermore, Sable demonstrates stable performance as we scale the number of agents, handling environments with more than a thousand agents while exhibiting a linear increase in memory usage. Finally, we conduct ablation studies to isolate the source of Sable's performance gains and confirm its efficient computational memory usage. Our results highlight Sable's performance and efficiency, positioning it as a leading approach to MARL at scale.
- Abstract(参考訳): マルチエージェント強化学習(MARL)の分野がより大規模で複雑な環境へと進むにつれ、多くのエージェントに対するメモリ効率とスケーラビリティを維持しながら、高い性能を達成することがますます重要になる。
最近の研究はいくつかの高度なアルゴリズムを導いてきたが、これらすべての重要な性質を同時に解決することはなかった。
本稿では,Retentive Networks から MARL への保持機構を適応させる新奇で理論的に健全なアルゴリズム Sable を紹介する。
Sableの保持に基づくシーケンスモデリングアーキテクチャは、多数のエージェントへの計算効率のよいスケーリングを可能にし、長期の時間的コンテキストを維持し、大規模な部分的に観測可能な環境に適している。
6つの多様な環境における広範囲な評価を通じて、Sableはタスクの大部分(45のうち34、約75、%)において、既存の最先端メソッドを大幅に上回っていることを示す。
さらに、Sableは、エージェント数を拡大し、1000以上のエージェントで環境を処理しながら、メモリ使用量の線形増加を示すため、安定したパフォーマンスを示す。
最後に、Sableの性能向上の源泉を分離し、その効率的な計算メモリ使用量を確認するためのアブレーション研究を行う。
我々の結果はSableの性能と効率を強調し、大規模にMARLをリードするアプローチとして位置づけた。
関連論文リスト
- MAT: Multi-Range Attention Transformer for Efficient Image Super-Resolution [14.265237560766268]
多様な空間範囲にわたる注意の柔軟な統合は、大幅なパフォーマンス向上をもたらす可能性がある。
スーパーレゾリューション(SR)タスクに適したマルチランジアテンショントランス(MAT)を提案する。
MATは、様々な空間範囲にまたがる依存関係を包含し、その特徴表現の多様性と有効性を向上させる。
論文 参考訳(メタデータ) (2024-11-26T08:30:31Z) - HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model [39.169389255970806]
HiAgentは、サブゴールをメモリチャンクとして活用して、LLM(Large Language Model)ベースのエージェントの動作メモリを階層的に管理するフレームワークである。
その結果,HiAgentは成功率を2倍に向上し,平均ステップ数を3.8倍に削減した。
論文 参考訳(メタデータ) (2024-08-18T17:59:49Z) - Human-like Episodic Memory for Infinite Context LLMs [13.211261438927798]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、それでも広範なコンテキストの処理に苦戦している。
本研究では,人間のエピソード記憶と事象認知をLLMに組み込む新しいアプローチであるEM-LLMを紹介する。
EM-LLMは、ベイジアン・サプライズとグラフ理論境界修正の組み合わせを用いて、トークンの列をコヒーレントなエピソード事象に整理する。
論文 参考訳(メタデータ) (2024-07-12T17:34:03Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
トレーニングを通して一定間隔を保存するTop-KASTを提案する。
確立したImageNetベンチマークのトレーニングモデルでは,従来の作業と同等かそれ以上に動作可能であることを示す。
ImageNetの結果に加えて、言語モデリングの分野においても、我々のアプローチを実証しています。
論文 参考訳(メタデータ) (2021-06-07T11:13:05Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
継続的学習のための簡易タスク特化機能マップ変換戦略を提案する。
これらは新しいタスクを学習するための強力な柔軟性を提供し、ベースアーキテクチャに最小パラメータを追加することで実現される。
本手法の有効性と効率を,判別(cifar-100およびimagenet-1k)および生成的タスクの一連の実験を用いて実証する。
論文 参考訳(メタデータ) (2021-03-25T01:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。