論文の概要: Sable: a Performant, Efficient and Scalable Sequence Model for MARL
- arxiv url: http://arxiv.org/abs/2410.01706v3
- Date: Tue, 18 Feb 2025 15:15:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:03:51.795371
- Title: Sable: a Performant, Efficient and Scalable Sequence Model for MARL
- Title(参考訳): Sable: MARLのためのパフォーマンス、効率的、スケーラブルなシーケンスモデル
- Authors: Omayma Mahjoub, Sasha Abramowitz, Ruan de Kock, Wiem Khlifi, Simon du Toit, Jemma Daniel, Louay Ben Nessir, Louise Beyers, Claude Formanek, Liam Clark, Arnu Pretorius,
- Abstract要約: 我々は、MARLに高性能で、メモリ効率が高く、スケーラブルなシーケンスモデリングアプローチであるSableを紹介した。
SableはRetentive Networksの保持機構に適応して、マルチエージェント観測の計算的に効率的な処理を実現する。
我々は、Sableが既存の最先端メソッドを多種多様なタスクで大幅に上回っていることを実証する。
- 参考スコア(独自算出の注目度): 3.676220008456203
- License:
- Abstract: As multi-agent reinforcement learning (MARL) progresses towards solving larger and more complex problems, it becomes increasingly important that algorithms exhibit the key properties of (1) strong performance, (2) memory efficiency and (3) scalability. In this work, we introduce Sable, a performant, memory efficient and scalable sequence modeling approach to MARL. Sable works by adapting the retention mechanism in Retentive Networks (Sun et al., 2023) to achieve computationally efficient processing of multi-agent observations with long context memory for temporal reasoning. Through extensive evaluations across six diverse environments, we demonstrate how Sable is able to significantly outperform existing state-of-the-art methods in a large number of diverse tasks (34 out of 45 tested). Furthermore, Sable maintains performance as we scale the number of agents, handling environments with more than a thousand agents while exhibiting a linear increase in memory usage. Finally, we conduct ablation studies to isolate the source of Sable's performance gains and confirm its efficient computational memory usage.
- Abstract(参考訳): マルチエージェント強化学習 (MARL) がさらに複雑化していくにつれて,(1) 性能,(2) メモリ効率,(3) スケーラビリティのキーとなる特性を示すアルゴリズムがますます重要になる。
本研究は,MARLに高性能で,メモリ効率が高く,スケーラブルなシーケンスモデリング手法であるSableを紹介する。
Sable は Retentive Networks (Sun et al , 2023) の保持機構を適用して, 時間的推論のための長期記憶を用いたマルチエージェント観測の計算処理を実現する。
6つの多様な環境における広範囲な評価を通じて、Sableが既存の最先端メソッドを、多種多様なタスク(45テスト中34回)で大幅に上回っていることを実証する。
さらに、Sableは、エージェントの数を拡大し、1000以上のエージェントで環境を処理しながら、メモリ使用量の線形増加を示すため、パフォーマンスを維持します。
最後に、Sableの性能向上の源泉を分離し、その効率的な計算メモリ使用量を確認するためのアブレーション研究を行う。
関連論文リスト
- LazyDiT: Lazy Learning for the Acceleration of Diffusion Transformers [79.07412045476872]
拡散変換器は、様々な生成タスクの優越的なモデルとして登場してきた。
各拡散段階におけるモデル全体の実行は不要であることを示し、いくつかの計算は以前のステップの結果を遅延的に再利用することでスキップできることを示した。
遅延学習フレームワークを提案する。このフレームワークは,初期ステップからキャッシュされた結果を効率よく活用し,冗長な計算を省略する。
論文 参考訳(メタデータ) (2024-12-17T01:12:35Z) - Selective State Space Memory for Large Vision-Language Models [0.0]
State Space Memory Integration (SSMI)は、LVLMの効率的な微調整のための新しいアプローチである。
SSMIは長距離依存関係をキャプチャし、タスク固有の視覚的およびシーケンシャルなパターンを効果的に注入する。
COCO Captioning、VQA、Flickr30kといったベンチマークデータセットの実験は、SSMIが最先端のパフォーマンスを達成することを実証している。
論文 参考訳(メタデータ) (2024-12-13T05:40:50Z) - MAT: Multi-Range Attention Transformer for Efficient Image Super-Resolution [14.265237560766268]
多様な空間範囲にわたる注意の柔軟な統合は、大幅なパフォーマンス向上をもたらす可能性がある。
スーパーレゾリューション(SR)タスクに適したマルチランジアテンショントランス(MAT)を提案する。
MATは、様々な空間範囲にまたがる依存関係を包含し、その特徴表現の多様性と有効性を向上させる。
論文 参考訳(メタデータ) (2024-11-26T08:30:31Z) - Taipan: Efficient and Expressive State Space Language Models with Selective Attention [100.16383527459429]
自然言語処理(NLP)における長文言語モデリングの課題
Mambaのような最近のステートスペースモデル(SSM)は、メモリ使用量を一定に抑える代替手段を提供するが、大規模なコンテキスト内検索を必要とするタスクでは性能が劣る。
我々は,Mamba-2と選択注意層(SAL)を組み合わせた新しいハイブリッドアーキテクチャであるTaipanを紹介する。
我々の実験は、様々なスケールやタスクにまたがる優れたパフォーマンスを示し、より効率的な長文言語モデリングのための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-24T09:25:37Z) - HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model [39.169389255970806]
HiAgentは、サブゴールをメモリチャンクとして活用して、LLM(Large Language Model)ベースのエージェントの動作メモリを階層的に管理するフレームワークである。
その結果,HiAgentは成功率を2倍に向上し,平均ステップ数を3.8倍に削減した。
論文 参考訳(メタデータ) (2024-08-18T17:59:49Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Making Scalable Meta Learning Practical [40.24886572503001]
メタ学習は、その膨大な計算/メモリコスト、トレーニング不安定性、効率的な分散トレーニングサポートの欠如により、スケーラビリティの低下に悩まされてきた。
本研究では,暗黙の識別アルゴリズムとシステムの両方の進歩を組み合わせたSAMAを導入することで,スケーラブルなメタ学習の実現に注力する。
我々は,SAMAに基づくデータ最適化により,BERTやRoBERTaの大規模言語モデルによるテキスト分類精度が一貫した改善が達成され,画像分類タスクによる小型・大規模データプルーニングにおいて,最先端の処理結果が得られることを示す。
論文 参考訳(メタデータ) (2023-10-09T12:45:13Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。