論文の概要: Interpretable Contrastive Monte Carlo Tree Search Reasoning
- arxiv url: http://arxiv.org/abs/2410.01707v1
- Date: Fri, 11 Oct 2024 16:28:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 15:53:34.139921
- Title: Interpretable Contrastive Monte Carlo Tree Search Reasoning
- Title(参考訳): 解釈可能なコントラスト型モンテカルロ木探索手法
- Authors: Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, Lijie Wen,
- Abstract要約: 大規模言語モデル(LLM)のための新しいモンテカルロ木探索法(MCTS)を提案する。
SC-MCTSは推論精度と速度の両方を著しく改善することを示した。
我々は,Llama-3.1-70BとSC-MCTS*を用いたBlocksworldのマルチステップ推論データセットにおいて,平均17.4%でo1-miniを上回りました。
- 参考スコア(独自算出の注目度): 25.11379135302235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose SC-MCTS*: a novel Monte Carlo Tree Search (MCTS) reasoning algorithm for Large Language Models (LLMs), significantly improves both reasoning accuracy and speed. Our motivation comes from: 1. Previous MCTS LLM reasoning works often overlooked its biggest drawback--slower speed compared to CoT; 2. Previous research mainly used MCTS as a tool for LLM reasoning on various tasks with limited quantitative analysis or ablation studies of its components from reasoning interpretability perspective. 3. The reward model is the most crucial component in MCTS, however previous work has rarely conducted in-depth study or improvement of MCTS's reward models. Thus, we conducted extensive ablation studies and quantitative analysis on components of MCTS, revealing the impact of each component on the MCTS reasoning performance of LLMs. Building on this, (i) we designed a highly interpretable reward model based on the principle of contrastive decoding and (ii) achieved an average speed improvement of 51.9% per node using speculative decoding. Additionally, (iii) we improved UCT node selection strategy and backpropagation used in previous works, resulting in significant performance improvement. We outperformed o1-mini by an average of 17.4% on the Blocksworld multi-step reasoning dataset using Llama-3.1-70B with SC-MCTS*.
- Abstract(参考訳): 大規模言語モデル(LLM)のための新しいMCTS推論アルゴリズムであるSC-MCTS*を提案する。
私たちのモチベーションは:
1. 従来のMCTS LLM推論作業は、CoTと比較して最大の欠点-スロースピードを見落としていることが多い。
2) 従来の研究は, LLM推論のツールとしてMCTSを主に用いており, 定量分析が限定的であったり, 解釈可能性の観点からその成分のアブレーション研究を行ったりしていた。
3)報奨モデルはMCTSにおいて最も重要な要素であるが,これまでの研究ではMCTSの報奨モデルの改良や詳細な研究はめったに行われていない。
そこで我々は, LLMのMCTS推論性能に対する各成分の影響を明らかにするとともに, MCTSの成分に対する広範囲なアブレーション研究および定量的解析を行った。
この上に建つ。
一 コントラスト復号の原理に基づく高度に解釈可能な報酬モデルを設計し、
(ii) は投機的復号法を用いて1ノードあたり51.9%の速度向上を達成した。
また、
3) UCTノード選択戦略とバックプロパゲーションを改善した結果,性能が大幅に向上した。
我々は,Llama-3.1-70BとSC-MCTS*を用いたBlocksworldのマルチステップ推論データセットにおいて,平均17.4%でo1-miniを上回りました。
関連論文リスト
- MCTS-Judge: Test-Time Scaling in LLM-as-a-Judge for Code Correctness Evaluation [17.432401371613903]
本稿では,コード正確性評価のための資源効率の高いシステム2思考フレームワークを提案する。
MCTS-Judgeはモンテカルロ木探索を用いて問題を単純かつ多視点的な評価に分解する。
高精度で単体テストレベルの報酬メカニズムは、大規模言語モデルにライン・バイ・ライン分析の実行を促す。
論文 参考訳(メタデータ) (2025-02-18T02:55:48Z) - MME-CoT: Benchmarking Chain-of-Thought in Large Multimodal Models for Reasoning Quality, Robustness, and Efficiency [63.23935582919081]
CoT (Chain-of-Thought) は,Large Language Models (LLMs) の推論能力を大幅に向上させた。
我々は,LMMのCoT推論性能を評価する特別ベンチマークであるMME-CoTを紹介する。
我々は最先端のLMMの詳細な分析を行い、いくつかの重要な知見を明らかにした。
論文 参考訳(メタデータ) (2025-02-13T18:59:46Z) - LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters! [53.84130385074551]
大推論モデル(LRM)は、長いチェーン・オブ・シント(Long CoT)に従うことによって複雑な推論問題に取り組む
また,Large Language Model (LLM) は,データ効率の教師付き微調整 (SFT) とパラメータ効率の低い低ランク適応 (LoRA) により,Long CoT推論を効果的に学習できることを見出した。
たった17kのCoTトレーニングサンプルで、Qwen2.5-32B-Instructモデルは、幅広い数学およびコーディングベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2025-02-11T08:48:48Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
CoT推論は大規模言語モデル(LLM)の多段階推論能力を高める
しかし、ほとんどのモデルやタスクでは、CoT長の増加は一貫して推論精度の向上につながりますか?
本稿では, 推論ステップの数が増加するにつれて, 性能は向上するが, 最終的には低下する,というニュアンスな関係を観察する。
論文 参考訳(メタデータ) (2025-02-11T05:28:59Z) - S-LoRA: Scalable Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
基礎モデルによる継続的な学習は、逐次的なタスクに事前訓練されたモデルのパワーを活用するための有望なアプローチとして現れてきた。
本稿では,LRAパラメータの方向と大きさの学習を段階的に分離する,CL(特にクラスインクリメンタルラーニング)のためのスケーラブル低ランク適応(S-LoRA)手法を提案する。
我々の理論的および実証的な分析により、S-LoRAは重なり合う低損失領域に収束する低損失軌道を辿る傾向にあり、CLの安定性と塑性のトレードオフは良好であることが示された。
論文 参考訳(メタデータ) (2025-01-22T20:00:41Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
大きな言語モデル(LLM)は印象的な機能を示しているが、それでも複数のステップを必要とする複雑な推論タスクに苦戦している。
LaTRO(LaTent Reasoning Optimization)は、潜在分布からのサンプリングとして推論を定式化するためのフレームワークである。
複数のモデルアーキテクチャを用いて、GSM8KおよびARC-Challengeデータセットの実験を通してLaTROを検証する。
論文 参考訳(メタデータ) (2024-11-06T22:02:30Z) - Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment [0.0]
Monte Carlo Tree Search (MCTS) は複雑な意思決定問題を解決する強力なアルゴリズムである。
本稿では,古典的強化学習課題であるFrozenLake環境に適用したMCTS実装を提案する。
論文 参考訳(メタデータ) (2024-09-25T05:04:53Z) - THOUGHTSCULPT: Reasoning with Intermediate Revision and Search [45.55992387270442]
本稿では,THOUGHTSCULPTを提案する。
THOUGHTSCULPTはモンテカルロ木探索(MCTS)を用いて潜在的な解の探索木を探索し、解を一度に1つのアクションで構築し、任意のドメイン固有のコンポーネントに基づいて評価する。
実証的には、THOUGHTSCULPTは3つの課題にまたがる最先端の推論手法より優れている。
論文 参考訳(メタデータ) (2024-04-09T02:53:14Z) - AQA-Bench: An Interactive Benchmark for Evaluating LLMs' Sequential
Reasoning Ability [29.1826948551409]
AQA-Benchは、大規模言語モデルの逐次推論能力を評価するための新しいベンチマークである。
AQA-Benchは,2進探索,深さ優先探索,幅優先探索という3つのアルゴリズムで構築されている。
我々の調査では興味深い発見がいくつか示されている。
論文 参考訳(メタデータ) (2024-02-14T18:59:33Z) - Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis [70.78170766633039]
我々は、MTS予測提案を確実かつ公平に評価する手段の必要性に対処する。
BasicTS+は、MTS予測ソリューションの公平で包括的で再現可能な比較を可能にするために設計されたベンチマークである。
リッチデータセットとともにBasicTS+を適用し,45 MTS以上の予測ソリューションの性能を評価する。
論文 参考訳(メタデータ) (2023-10-09T19:52:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。