論文の概要: Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment
- arxiv url: http://arxiv.org/abs/2409.16620v1
- Date: Wed, 25 Sep 2024 05:04:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 05:35:28.462021
- Title: Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment
- Title(参考訳): 凍結湖環境におけるモンテカルロ木探索の高精度化
- Authors: Esteban Aldana Guerra,
- Abstract要約: Monte Carlo Tree Search (MCTS) は複雑な意思決定問題を解決する強力なアルゴリズムである。
本稿では,古典的強化学習課題であるFrozenLake環境に適用したMCTS実装を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monte Carlo Tree Search (MCTS) is a powerful algorithm for solving complex decision-making problems. This paper presents an optimized MCTS implementation applied to the FrozenLake environment, a classic reinforcement learning task characterized by stochastic transitions. The optimization leverages cumulative reward and visit count tables along with the Upper Confidence Bound for Trees (UCT) formula, resulting in efficient learning in a slippery grid world. We benchmark our implementation against other decision-making algorithms, including MCTS with Policy and Q-Learning, and perform a detailed comparison of their performance. The results demonstrate that our optimized approach effectively maximizes rewards and success rates while minimizing convergence time, outperforming baseline methods, especially in environments with inherent randomness.
- Abstract(参考訳): Monte Carlo Tree Search (MCTS) は複雑な意思決定問題を解決する強力なアルゴリズムである。
本稿では,確率遷移を特徴とする古典的強化学習課題であるFrozenLake環境に適用したMCTS実装を提案する。
この最適化は、累積報酬と訪問数表と、上信頼境界木(UCT)式を併用し、滑りやすいグリッドの世界で効率よく学習する。
MCTS with Policy や Q-Learning など,他の意思決定アルゴリズムに対して実装をベンチマークし,その性能を詳細に比較する。
その結果、最適化された手法は、収束時間を最小限に抑えつつ、報酬と成功率を効果的に最大化し、特に固有のランダム性のある環境において、ベースライン法よりも優れることを示した。
関連論文リスト
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - Optimizing Variational Quantum Circuits Using Metaheuristic Strategies in Reinforcement Learning [2.7504809152812695]
本研究では,メタヒューリスティックアルゴリズム – Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Genetic Algorithm, Simulated Annealing, Harmony Search – の量子強化学習への統合について検討する。
5Times5$ MiniGrid Reinforcement Learning環境の評価は、すべてのアルゴリズムがほぼ最適結果をもたらすことを示している。
論文 参考訳(メタデータ) (2024-08-02T11:14:41Z) - Monte Carlo Tree Descent for Black-Box Optimization [10.698553177585973]
我々は、より高速な最適化のためにサンプルベース降下をさらに統合する方法を研究する。
我々は,モンテカルロ探索木の拡張手法を,頂点における新しい降下法を用いて設計する。
提案アルゴリズムは,多くの挑戦的ベンチマーク問題において,最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-11-01T22:45:10Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Policy Gradient Algorithms with Monte Carlo Tree Learning for Non-Markov Decision Processes [3.9311044240639568]
政策勾配 (PG) は、勾配上昇を用いたパラメータ化政策モデルを最適化する強化学習 (RL) アプローチである。
PGは非マルコフ環境でもうまく機能するが、高原やピークネスの問題に遭遇することがある。
本稿では、まず、オンラインRLのためのMCTSの適応であるモンテカルロ木学習(MCTL)を紹介し、その強みを活用するためにPGとMCTLの政策アプローチについて検討する。
論文 参考訳(メタデータ) (2022-06-02T12:21:40Z) - Learning to Schedule Heuristics for the Simultaneous Stochastic
Optimization of Mining Complexes [2.538209532048867]
提案したL2P(Learning-to-perturb)ハイパーヒューリスティックは,マルチ隣り合うシミュレートアニールアルゴリズムである。
L2Pは、効率、堅牢性、一般化能力に重点を置いて、いくつかの実世界の鉱業施設で試験されている。
その結果,反復回数を30~50%削減し,計算時間を30~45%削減した。
論文 参考訳(メタデータ) (2022-02-25T18:20:14Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Stochastic Optimization Forests [60.523606291705214]
標準的なランダムな森林アルゴリズムのように予測精度を向上させるために分割するのではなく、分割を選択した木を栽培し、下流の意思決定品質を直接最適化することで、森林決定政策の訓練方法を示す。
概略分割基準は、各候補分割に対して正確に最適化された森林アルゴリズムに近い性能を保ちながら、100倍のランニング時間を短縮できることを示す。
論文 参考訳(メタデータ) (2020-08-17T16:56:06Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
様々な目的に対して最適な決定木を生成する手法を提案する。
また,連続変数が存在する場合に最適な結果が得られるスケーラブルなアルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-06-15T19:00:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。