Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective
- URL: http://arxiv.org/abs/2410.01720v2
- Date: Sat, 12 Oct 2024 14:44:06 GMT
- Title: Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective
- Authors: Zeyu Gan, Yong Liu,
- Abstract summary: We show that the generalization capability of the post-trained model is critically determined by the information gain derived from the generative model.
We also introduce the concept of Generalization Gain via Mutual Information (GGMI) and elucidate the relationship between generalization gain and information gain.
This analysis serves as a theoretical foundation for synthetic data generation and further highlights its connection with the generalization capability of post-trained models.
- Score: 9.590540796223715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic data has become a pivotal resource in post-training tasks for large language models (LLMs) due to the scarcity of high-quality, specific data. While various methods have been developed to generate synthetic data, there remains a discernible gap between the practical effects of synthetic data and our theoretical comprehension. To address this challenge, we commence by presenting a detailed modeling of the prevalent synthetic data generation process. Building upon this modeling, we demonstrate that the generalization capability of the post-trained model is critically determined by the information gain derived from the generative model, as analyzed from a novel reverse-bottleneck perspective. Moreover, we introduce the concept of Generalization Gain via Mutual Information (GGMI) and elucidate the relationship between generalization gain and information gain. This analysis serves as a theoretical foundation for synthetic data generation and further highlights its connection with the generalization capability of post-trained models, offering an understanding about the design of synthetic data generation techniques and the optimization of the post-training process. We open source our code at https://github.com/ZyGan1999/Towards-a-Theoretical-Understanding-of-Synthetic-Data-in-LLM-Post-Train ing.
Related papers
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - zGAN: An Outlier-focused Generative Adversarial Network For Realistic Synthetic Data Generation [0.0]
"Black swans" have posed a challenge to performance of classical machine learning models.
This article provides an overview of the zGAN model architecture developed for the purpose of generating synthetic data with outlier characteristics.
It shows promising results on realistic synthetic data generation, as well as uplift capabilities vis-a-vis model performance.
arXiv Detail & Related papers (2024-10-28T07:55:11Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Synthetic Oversampling: Theory and A Practical Approach Using LLMs to Address Data Imbalance [16.047084318753377]
Imbalanced data and spurious correlations are common challenges in machine learning and data science.
Oversampling, which artificially increases the number of instances in the underrepresented classes, has been widely adopted to tackle these challenges.
We introduce OPAL, a systematic oversampling approach that leverages the capabilities of large language models to generate high-quality synthetic data for minority groups.
arXiv Detail & Related papers (2024-06-05T21:24:26Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - Utility Theory of Synthetic Data Generation [12.511220449652384]
This paper bridges the practice-theory gap by establishing relevant utility theory in a statistical learning framework.
It considers two utility metrics: generalization and ranking of models trained on synthetic data.
arXiv Detail & Related papers (2023-05-17T07:49:16Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training [52.93808218720784]
Synthetic-to-real transfer learning is a framework in which we pre-train models with synthetically generated images and ground-truth annotations for real tasks.
Although synthetic images overcome the data scarcity issue, it remains unclear how the fine-tuning performance scales with pre-trained models.
We observe a simple and general scaling law that consistently describes learning curves in various tasks, models, and complexities of synthesized pre-training data.
arXiv Detail & Related papers (2021-08-25T02:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.