Decision-Focused Uncertainty Quantification
- URL: http://arxiv.org/abs/2410.01767v1
- Date: Wed, 2 Oct 2024 17:22:09 GMT
- Title: Decision-Focused Uncertainty Quantification
- Authors: Santiago Cortes-Gomez, Carlos PatiƱo, Yewon Byun, Steven Wu, Eric Horvitz, Bryan Wilder,
- Abstract summary: We develop a framework based on conformal prediction to produce prediction sets that account for a downstream decision loss function.
We present a real-world use case in healthcare diagnosis, where our method effectively incorporates the hierarchical structure of dermatological diseases.
- Score: 32.93992587758183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is increasing interest in ''decision-focused'' machine learning methods which train models to account for how their predictions are used in downstream optimization problems. Doing so can often improve performance on subsequent decision problems. However, current methods for uncertainty quantification do not incorporate any information at all about downstream decisions. We develop a framework based on conformal prediction to produce prediction sets that account for a downstream decision loss function, making them more appropriate to inform high-stakes decision-making. Our approach harnesses the strengths of conformal methods--modularity, model-agnosticism, and statistical coverage guarantees--while incorporating downstream decisions and user-specified utility functions. We prove that our methods retain standard coverage guarantees. Empirical evaluation across a range of datasets and utility metrics demonstrates that our methods achieve significantly lower decision loss compared to standard conformal methods. Additionally, we present a real-world use case in healthcare diagnosis, where our method effectively incorporates the hierarchical structure of dermatological diseases. It successfully generates sets with coherent diagnostic meaning, aiding the triage process during dermatology diagnosis and illustrating how our method can ground high-stakes decision-making on external domain knowledge.
Related papers
- Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series [4.656302602746229]
This paper introduces a novel method integrating counterfactual estimation techniques and uncertainty quantification.
We validate our method using two simulated datasets, one focused on the cardiovascular system and the other on COVID-19.
Our findings indicate that our method has robust performance across different counterfactual estimation baselines.
arXiv Detail & Related papers (2024-10-11T13:56:25Z) - Toward an Integrated Decision Making Framework for Optimized Stroke Diagnosis with DSA and Treatment under Uncertainty [0.0]
Current diagnostic methods, including Digital Subtraction Angiography (DSA), face limitations due to high costs and its invasive nature.
We propose a novel approach using a Partially Observable Markov Decision Process (POMDP) framework.
Our model integrates advanced diagnostic tools and treatment approaches with a decision-making algorithm that accounts for the inherent uncertainties in stroke diagnosis.
arXiv Detail & Related papers (2024-07-24T03:01:55Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Empirical Validation of Conformal Prediction for Trustworthy Skin Lesions Classification [3.7305040207339286]
We develop Conformal Prediction, Monte Carlo Dropout, and Evidential Deep Learning approaches to assess uncertainty quantification in deep neural networks.
Results: The experimental results demonstrate a significant enhancement in uncertainty quantification with the utilization of the Conformal Prediction method.
Our conclusion highlights a robust and consistent performance of conformal prediction across diverse testing conditions.
arXiv Detail & Related papers (2023-12-12T17:37:16Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
Segmentation [7.313010190714819]
quantifying uncertainty associated with model predictions is crucial in critical clinical applications.
Deep learning based methods for automatic organ segmentation have shown promise in aiding diagnosis and treatment planning.
It is unclear which method is preferred in the medical image analysis setting.
arXiv Detail & Related papers (2023-08-15T00:09:33Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.