On metric choice in dimension reduction for Fréchet regression
- URL: http://arxiv.org/abs/2410.01783v2
- Date: Mon, 21 Oct 2024 18:39:35 GMT
- Title: On metric choice in dimension reduction for Fréchet regression
- Authors: Abdul-Nasah Soale, Congli Ma, Siyu Chen, Obed Koomson,
- Abstract summary: Fr'echet regression is becoming a mainstay in modern data analysis for analyzing non-traditional data types.
It is especially useful in the analysis of complex health data such as continuous monitoring and imaging data.
- Score: 7.161207910629032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fr\'echet regression is becoming a mainstay in modern data analysis for analyzing non-traditional data types belonging to general metric spaces. This novel regression method is especially useful in the analysis of complex health data such as continuous monitoring and imaging data. Fr\'echet regression utilizes the pairwise distances between the random objects, which makes the choice of metric crucial in the estimation. In this paper, existing dimension reduction methods for Fr\'echet regression are reviewed, and the effect of metric choice on the estimation of the dimension reduction subspace is explored for the regression between random responses and Euclidean predictors. Extensive numerical studies illustrate how different metrics affect the central and central mean space estimators. Two real applications involving analysis of brain connectivity networks of subjects with and without Parkinson's disease and an analysis of the distributions of glycaemia based on continuous glucose monitoring data are provided, to demonstrate how metric choice can influence findings in real applications.
Related papers
- Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We further extend our analysis to the case where the test point has non-trivial correlations with the training set, setting often encountered in time series forecasting.
We validate our theory across a variety of high dimensional data.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - Deep Fréchet Regression [4.915744683251151]
We propose a flexible regression model capable of handling high-dimensional predictors without imposing parametric assumptions.
The proposed model outperforms existing methods for non-Euclidean responses.
arXiv Detail & Related papers (2024-07-31T07:54:14Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Semi-Supervised Deep Sobolev Regression: Estimation, Variable Selection
and Beyond [3.782392436834913]
We propose SDORE, a semi-supervised deep Sobolev regressor, for the nonparametric estimation of the underlying regression function and its gradient.
We conduct a comprehensive analysis of the convergence rates of SDORE and establish a minimax optimal rate for the regression function.
We also derive a convergence rate for the associated plug-in gradient estimator, even in the presence of significant domain shift.
arXiv Detail & Related papers (2024-01-09T13:10:30Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Bayesian longitudinal tensor response regression for modeling
neuroplasticity [0.0]
A major interest in longitudinal neuroimaging studies involves investigating voxel-level neuroplasticity due to treatment and other factors across visits.
We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially-distributed voxels.
The proposed method is able to infer individual-level neuroplasticity, allowing for examination of personalized disease or recovery trajectories.
arXiv Detail & Related papers (2023-09-12T18:48:18Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
We propose a novel random forest weighted local Fr'echet regression paradigm.
Our first method uses these weights as the local average to solve the conditional Fr'echet mean.
Second method performs local linear Fr'echet regression, both significantly improving existing Fr'echet regression methods.
arXiv Detail & Related papers (2022-02-10T09:10:59Z) - Dimension Reduction and Data Visualization for Fr\'echet Regression [8.713190936209156]
Fr'echet regression model provides a promising framework for regression analysis with metric spacevalued responses.
We introduce a flexible sufficient dimension reduction (SDR) method for Fr'echet regression to achieve two purposes.
arXiv Detail & Related papers (2021-10-01T15:01:32Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
We implement a two-step approach to multi-omic logistic regression in which variable selection is performed on each layer separately.
Our approach should be preferred if the goal is to select as many relevant predictors as possible.
Our proposed approach allows us to identify features that characterise cardiometabolic syndrome at the molecular level.
arXiv Detail & Related papers (2020-08-01T10:36:27Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.