論文の概要: PROXI: Challenging the GNNs for Link Prediction
- arxiv url: http://arxiv.org/abs/2410.01802v1
- Date: Wed, 2 Oct 2024 17:57:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 15:04:32.174381
- Title: PROXI: Challenging the GNNs for Link Prediction
- Title(参考訳): PROXI:リンク予測にGNNを適合させる
- Authors: Astrit Tola, Jack Myrick, Baris Coskunuzer,
- Abstract要約: 本稿では,グラフと属性空間の両方におけるノードペアの近接情報を活用するPROXIを紹介する。
標準機械学習(ML)モデルは競争力があり、最先端のGNNモデルよりも優れています。
ProXIによる従来のGNNの拡張はリンク予測性能を大幅に向上させることを示す。
- 参考スコア(独自算出の注目度): 3.8233569758620063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past decade, Graph Neural Networks (GNNs) have transformed graph representation learning. In the widely adopted message-passing GNN framework, nodes refine their representations by aggregating information from neighboring nodes iteratively. While GNNs excel in various domains, recent theoretical studies have raised concerns about their capabilities. GNNs aim to address various graph-related tasks by utilizing such node representations, however, this one-size-fits-all approach proves suboptimal for diverse tasks. Motivated by these observations, we conduct empirical tests to compare the performance of current GNN models with more conventional and direct methods in link prediction tasks. Introducing our model, PROXI, which leverages proximity information of node pairs in both graph and attribute spaces, we find that standard machine learning (ML) models perform competitively, even outperforming cutting-edge GNN models when applied to these proximity metrics derived from node neighborhoods and attributes. This holds true across both homophilic and heterophilic networks, as well as small and large benchmark datasets, including those from the Open Graph Benchmark (OGB). Moreover, we show that augmenting traditional GNNs with PROXI significantly boosts their link prediction performance. Our empirical findings corroborate the previously mentioned theoretical observations and imply that there exists ample room for enhancement in current GNN models to reach their potential.
- Abstract(参考訳): 過去10年間、グラフニューラルネットワーク(GNN)はグラフ表現学習を変革してきた。
広く採用されているメッセージパッシングGNNフレームワークでは、近隣ノードからの情報を反復的に集約することで、ノードが表現を洗練する。
GNNは様々な領域で優れているが、最近の理論的研究は、その能力を懸念している。
GNNは、このようなノード表現を利用することで、様々なグラフ関連タスクに対処することを目指しているが、このワンサイズフィットのアプローチは、多様なタスクに対してサブ最適であることを証明している。
これらの観測により,既存のGNNモデルと,リンク予測タスクにおける従来手法と直接手法の比較実験を行った。
グラフと属性空間の両方におけるノードペアの近接情報を活用するPROXIモデルの導入により,標準機械学習(ML)モデルが,ノード近傍と属性から得られた近接メトリクスに適用した場合,最先端のGNNモデルよりも優れていることが判明した。
これは、ホモフレンドリックネットワークとヘテロフレンドリックネットワークの両方、およびOpen Graph Benchmark(OGB)など、小規模で大規模なベンチマークデータセットに当てはまる。
さらに,従来のGNNを PROXI で拡張することでリンク予測性能が大幅に向上することを示す。
我々の経験的発見は、前述の理論的な観察と相関し、現在のGNNモデルにその可能性に到達するための十分な余地があることを示唆している。
関連論文リスト
- Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
統計的観点から,ノードプロファイルとトポロジの関係を定量化するAMUDを提案する。
また、AMUDのための新しい有向グラフ学習パラダイムとしてADPAを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:54:11Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - 2-hop Neighbor Class Similarity (2NCS): A graph structural metric
indicative of graph neural network performance [4.051099980410583]
グラフニューラルネットワーク(GNN)は、多数のドメインにわたるグラフ構造化データに対して最先端のパフォーマンスを実現する。
異なるタイプのノードが接続されるヘテロ親和性グラフでは、GNNは一貫して機能しない。
2-hop Neighbor Class similarity (2NCS) は、GNNのパフォーマンスと、他の指標よりも強く、一貫して相関する新しい定量的グラフ構造特性である。
論文 参考訳(メタデータ) (2022-12-26T16:16:51Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
我々はGeodesic GNN(GDGNN)と呼ばれる効率的なGNNフレームワークを提案する。
ラベル付けなしでノード間の条件付き関係をモデルに注入する。
ジオデシック表現を前提としたGDGNNは、通常のGNNよりもはるかにリッチな構造情報を持つノード、リンク、グラフ表現を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T02:02:35Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
グラフニューラルネットワーク(GNN)が導入される以前、不規則なデータ、特にグラフのモデリングと解析は、ディープラーニングのアキレスのヒールであると考えられていた。
本稿では,GNNのコア操作に対して,極めて単純かつ無作為な修正を施した中央ノード置換変分関数を提案する。
モデルの具体的な性能向上は、モデルがより少ないパラメータを使用しながら、有意なマージンで過去の最先端結果を上回った場合に観察される。
論文 参考訳(メタデータ) (2021-09-20T05:04:26Z) - Identity-aware Graph Neural Networks [63.6952975763946]
グラフニューラルネットワーク(ID-GNN)を1-WLテストよりも表現力の高いメッセージクラスを開発しています。
ID-GNNは、メッセージパッシング中にノードのIDを誘導的に考慮することにより、既存のGNNアーキテクチャを拡張します。
既存のGNNをID-GNNに変換すると、挑戦ノード、エッジ、グラフプロパティ予測タスクの平均40%の精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-25T18:59:01Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。