論文の概要: Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs
- arxiv url: http://arxiv.org/abs/2002.07518v3
- Date: Mon, 19 Apr 2021 15:54:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 19:24:48.150373
- Title: Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs
- Title(参考訳): 自己強化型GNN:モデル出力を用いたグラフニューラルネットワークの改善
- Authors: Han Yang, Xiao Yan, Xinyan Dai, Yongqiang Chen, James Cheng
- Abstract要約: グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
- 参考スコア(独自算出の注目度): 20.197085398581397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have received much attention recently because of
their excellent performance on graph-based tasks. However, existing research on
GNNs focuses on designing more effective models without considering much about
the quality of the input data. In this paper, we propose self-enhanced GNN
(SEG), which improves the quality of the input data using the outputs of
existing GNN models for better performance on semi-supervised node
classification. As graph data consist of both topology and node labels, we
improve input data quality from both perspectives. For topology, we observe
that higher classification accuracy can be achieved when the ratio of
inter-class edges (connecting nodes from different classes) is low and propose
topology update to remove inter-class edges and add intra-class edges. For node
labels, we propose training node augmentation, which enlarges the training set
using the labels predicted by existing GNN models. SEG is a general framework
that can be easily combined with existing GNN models. Experimental results
validate that SEG consistently improves the performance of well-known GNN
models such as GCN, GAT and SGC across different datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
しかし、既存のGNNの研究は、入力データの品質を考慮せずに、より効果的なモデルの設計に焦点を当てている。
本稿では,既存のGNNモデルの出力を用いて入力データの品質を向上し,半教師付きノード分類の性能を向上させるセルフエンハンスGNN(SEG)を提案する。
グラフデータはトポロジーとノードラベルの両方から構成されているため、両方の観点で入力データの品質が向上する。
トポロジでは,クラス間エッジ(異なるクラスからノードを接続する)の比率が低い場合に高い分類精度が得られ,クラス間エッジの除去とクラス間エッジの追加を行うトポロジ更新を提案する。
ノードラベルに対しては,既存のGNNモデルによって予測されるラベルを用いてトレーニングセットを拡大するトレーニングノード拡張を提案する。
SEGは、既存のGNNモデルと簡単に組み合わせられる一般的なフレームワークである。
実験結果から、SEGはGCN、GAT、SGCなどのよく知られたGNNモデルの性能を、異なるデータセットで一貫して改善することを確認した。
関連論文リスト
- GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - Hierarchical Model Selection for Graph Neural Netoworks [0.0]
本稿では,各グラフデータの指標を分析して,適切なグラフニューラルネットワーク(GNN)モデルを選択する階層モデル選択フレームワークを提案する。
実験では,HMSFが選択したモデルにより,様々なグラフデータに対するノード分類の性能が向上することを示した。
論文 参考訳(メタデータ) (2022-12-01T22:31:21Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Network In Graph Neural Network [9.951298152023691]
本稿では,任意のGNNモデルに対して,モデルをより深くすることでモデル容量を増大させるモデルに依存しない手法を提案する。
GNNレイヤの追加や拡張の代わりに、NGNNは、各GNNレイヤに非線形フィードフォワードニューラルネットワーク層を挿入することで、GNNモデルを深めている。
論文 参考訳(メタデータ) (2021-11-23T03:58:56Z) - Identity-aware Graph Neural Networks [63.6952975763946]
グラフニューラルネットワーク(ID-GNN)を1-WLテストよりも表現力の高いメッセージクラスを開発しています。
ID-GNNは、メッセージパッシング中にノードのIDを誘導的に考慮することにより、既存のGNNアーキテクチャを拡張します。
既存のGNNをID-GNNに変換すると、挑戦ノード、エッジ、グラフプロパティ予測タスクの平均40%の精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-25T18:59:01Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
論文 参考訳(メタデータ) (2020-03-26T22:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。