Privacy-Preserving SAM Quantization for Efficient Edge Intelligence in Healthcare
- URL: http://arxiv.org/abs/2410.01813v1
- Date: Sat, 14 Sep 2024 10:43:35 GMT
- Title: Privacy-Preserving SAM Quantization for Efficient Edge Intelligence in Healthcare
- Authors: Zhikai Li, Jing Zhang, Qingyi Gu,
- Abstract summary: Segment Anything Model (SAM) excels in intelligent image segmentation.
SAM poses significant challenges for deployment on resource-limited edge devices.
We propose a data-free quantization framework for SAM, called DFQ-SAM, which learns and calibrates quantization parameters without any original data.
- Score: 9.381558154295012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The disparity in healthcare personnel expertise and medical resources across different regions of the world is a pressing social issue. Artificial intelligence technology offers new opportunities to alleviate this issue. Segment Anything Model (SAM), which excels in intelligent image segmentation, has demonstrated exceptional performance in medical monitoring and assisted diagnosis. Unfortunately, the huge computational and storage overhead of SAM poses significant challenges for deployment on resource-limited edge devices. Quantization is an effective solution for model compression; however, traditional methods rely heavily on original data for calibration, which raises widespread concerns about medical data privacy and security. In this paper, we propose a data-free quantization framework for SAM, called DFQ-SAM, which learns and calibrates quantization parameters without any original data, thus effectively preserving data privacy during model compression. Specifically, we propose pseudo-positive label evolution for segmentation, combined with patch similarity, to fully leverage the semantic and distribution priors in pre-trained models, which facilitates high-quality data synthesis as a substitute for real data. Furthermore, we introduce scale reparameterization to ensure the accuracy of low-bit quantization. We perform extensive segmentation experiments on various datasets, and DFQ-SAM consistently provides significant performance on low-bit quantization. DFQ-SAM eliminates the need for data transfer in cloud-edge collaboration, thereby protecting sensitive data from potential attacks. It enables secure, fast, and personalized healthcare services at the edge, which enhances system efficiency and optimizes resource allocation, and thus facilitating the pervasive application of artificial intelligence in worldwide healthcare.
Related papers
- Masked Clinical Modelling: A Framework for Synthetic and Augmented Survival Data Generation [1.7769033811751995]
We present Masked Clinical Modelling (MCM), a framework inspired by masked language modelling.
MCM is designed for both data synthesis and conditional data augmentation.
We evaluate this prototype on the WHAS500 dataset using Cox Proportional Hazards models.
arXiv Detail & Related papers (2024-10-22T08:38:46Z) - COMFORT: A Continual Fine-Tuning Framework for Foundation Models Targeted at Consumer Healthcare [3.088223994180069]
COMFORT aims to bridge the gap between Transformer-based foundation models and WMS-based disease detection.
We introduce a novel approach for pre-training a Transformer-based foundation model on a large dataset of physiological signals.
We then fine-tune the model using various parameter-efficient fine-tuning (PEFT) methods, such as low-rank adaptation (LoRA) and its variants, to adapt it to various downstream disease detection tasks.
arXiv Detail & Related papers (2024-09-14T22:24:52Z) - A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation [5.011091042850546]
Adapting foundation models for medical image analysis requires finetuning them on a considerable amount of data.
collecting task-specific medical data for such finetuning at a central location raises many privacy concerns.
Although Federated learning (FL) provides an effective means for training on private decentralized data, communication costs in federating large foundation models can quickly become a significant bottleneck.
arXiv Detail & Related papers (2024-07-31T16:48:06Z) - PrivFED -- A Framework for Privacy-Preserving Federated Learning in Enhanced Breast Cancer Diagnosis [0.0]
This study introduces a federated learning framework, trained on the Wisconsin dataset, to mitigate challenges such as data scarcity and imbalance.
The model exhibits an average accuracy of 99.95% on edge devices and 98% on the central server.
arXiv Detail & Related papers (2024-05-13T18:01:57Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Machine Learning in Precision Medicine to Preserve Privacy via
Encryption [2.099922236065961]
We propose a generic machine learning with encryption (MLE) framework, which we used to build an ML model that predicts cancer.
Our framework's prediction accuracy is slightly higher than that of the most recent studies conducted on the same dataset.
We provide an open-source repository that contains the design and implementation of the framework, all the ML experiments and code, and the final predictive model deployed to a free cloud service.
arXiv Detail & Related papers (2021-02-05T20:22:15Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.