COMFORT: A Continual Fine-Tuning Framework for Foundation Models Targeted at Consumer Healthcare
- URL: http://arxiv.org/abs/2409.09549v1
- Date: Sat, 14 Sep 2024 22:24:52 GMT
- Title: COMFORT: A Continual Fine-Tuning Framework for Foundation Models Targeted at Consumer Healthcare
- Authors: Chia-Hao Li, Niraj K. Jha,
- Abstract summary: COMFORT aims to bridge the gap between Transformer-based foundation models and WMS-based disease detection.
We introduce a novel approach for pre-training a Transformer-based foundation model on a large dataset of physiological signals.
We then fine-tune the model using various parameter-efficient fine-tuning (PEFT) methods, such as low-rank adaptation (LoRA) and its variants, to adapt it to various downstream disease detection tasks.
- Score: 3.088223994180069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wearable medical sensors (WMSs) are revolutionizing smart healthcare by enabling continuous, real-time monitoring of user physiological signals, especially in the field of consumer healthcare. The integration of WMSs and modern machine learning (ML) enables unprecedented solutions to efficient early-stage disease detection. Despite the success of Transformers in various fields, their application to sensitive domains, such as smart healthcare, remains underexplored due to limited data accessibility and privacy concerns. To bridge the gap between Transformer-based foundation models and WMS-based disease detection, we propose COMFORT, a continual fine-tuning framework for foundation models targeted at consumer healthcare. COMFORT introduces a novel approach for pre-training a Transformer-based foundation model on a large dataset of physiological signals exclusively collected from healthy individuals with commercially available WMSs. We adopt a masked data modeling (MDM) objective to pre-train this health foundation model. We then fine-tune the model using various parameter-efficient fine-tuning (PEFT) methods, such as low-rank adaptation (LoRA) and its variants, to adapt it to various downstream disease detection tasks that rely on WMS data. In addition, COMFORT continually stores the low-rank decomposition matrices obtained from the PEFT algorithms to construct a library for multi-disease detection. The COMFORT library enables scalable and memory-efficient disease detection on edge devices. Our experimental results demonstrate that COMFORT achieves highly competitive performance while reducing memory overhead by up to 52% relative to conventional methods. Thus, COMFORT paves the way for personalized and proactive solutions to efficient and effective early-stage disease detection for consumer healthcare.
Related papers
- Scalable Drift Monitoring in Medical Imaging AI [37.1899538374058]
We develop MMC+, an enhanced framework for scalable drift monitoring.
It builds upon the CheXstray framework that introduced real-time drift detection for medical imaging AI models.
MMC+ offers a reliable and cost-effective alternative to continuous performance monitoring.
arXiv Detail & Related papers (2024-10-17T02:57:35Z) - Prediction and Detection of Terminal Diseases Using Internet of Medical Things: A Review [4.4389631374821255]
AI-driven models have achieved over 98% accuracy in predicting heart disease, chronic kidney disease (CKD), Alzheimer's disease, and lung cancer.
The incorporation of IoMT data, which is vast and heterogeneous, adds complexities in ensuring interoperability and security to protect patient privacy.
Future research should focus on data standardization and advanced preprocessing techniques to improve data quality and interoperability.
arXiv Detail & Related papers (2024-09-22T15:02:33Z) - Privacy-Preserving SAM Quantization for Efficient Edge Intelligence in Healthcare [9.381558154295012]
Segment Anything Model (SAM) excels in intelligent image segmentation.
SAM poses significant challenges for deployment on resource-limited edge devices.
We propose a data-free quantization framework for SAM, called DFQ-SAM, which learns and calibrates quantization parameters without any original data.
arXiv Detail & Related papers (2024-09-14T10:43:35Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
arXiv Detail & Related papers (2024-08-17T15:18:56Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - FIT: a Fast and Accurate Framework for Solving Medical Inquiring and
Diagnosing Tasks [10.687562550605739]
Self-diagnosis provides low-cost and accessible healthcare via an agent that queries the patient and makes predictions about possible diseases.
We propose a competitive framework, called FIT, which uses an information-theoretic reward to determine what data to collect next.
Our results in two simulated datasets show that FIT can effectively deal with large search space problems, outperforming existing baselines.
arXiv Detail & Related papers (2020-12-02T10:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.