Dynamic Portfolio Rebalancing: A Hybrid new Model Using GNNs and Pathfinding for Cost Efficiency
- URL: http://arxiv.org/abs/2410.01864v1
- Date: Wed, 2 Oct 2024 11:00:52 GMT
- Title: Dynamic Portfolio Rebalancing: A Hybrid new Model Using GNNs and Pathfinding for Cost Efficiency
- Authors: Diego Vallarino,
- Abstract summary: This paper introduces a novel approach to optimizing portfolio rebalancing by integrating Graph Neural Networks (GNNs) for predicting transaction costs and Dijkstra's algorithm for identifying cost-efficient rebalancing paths.
Empirical results show that this hybrid approach significantly reduces transaction costs, offering a powerful tool for portfolio managers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel approach to optimizing portfolio rebalancing by integrating Graph Neural Networks (GNNs) for predicting transaction costs and Dijkstra's algorithm for identifying cost-efficient rebalancing paths. Using historical stock data from prominent technology firms, the GNN is trained to forecast future transaction costs, which are then applied as edge weights in a financial asset graph. Dijkstra's algorithm is used to find the least costly path for reallocating capital between assets. Empirical results show that this hybrid approach significantly reduces transaction costs, offering a powerful tool for portfolio managers, especially in high-frequency trading environments. This methodology demonstrates the potential of combining advanced machine learning techniques with classical optimization algorithms to improve financial decision-making processes. Future research will explore expanding the asset universe and incorporating reinforcement learning for continuous portfolio optimization.
Related papers
- A New Way: Kronecker-Factored Approximate Curvature Deep Hedging and its Benefits [0.0]
This paper advances the computational efficiency of Deep Hedging frameworks through the novel integration of Kronecker-Factored Approximate Curvature (K-FAC) optimization.
The proposed architecture couples Long Short-Term Memory (LSTM) networks with K-FAC second-order optimization.
arXiv Detail & Related papers (2024-11-22T15:19:40Z) - Hopfield Networks for Asset Allocation [8.26034886618475]
We present the first application of modern Hopfield networks to the problem of portfolio optimization.
Compared to state-of-the-art deep-learning methods such as Long-Short Term Memory networks and Transformers, we find that the proposed approach performs on par or better.
arXiv Detail & Related papers (2024-07-24T21:24:00Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
We study both stream-based and pool-based active learning with neural network approximations.
We propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning.
arXiv Detail & Related papers (2024-04-18T21:52:14Z) - Onflow: an online portfolio allocation algorithm [0.0]
We introduce Onflow, a reinforcement learning technique that enables online optimization of portfolio allocation policies.
For log-normal assets, the strategy learned by Onflow, with transaction costs at zero, mimics Markowitz's optimal portfolio.
Onflow can remain efficient in regimes where other dynamical allocation techniques do not work anymore.
arXiv Detail & Related papers (2023-12-08T16:49:19Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - A Learnheuristic Approach to A Constrained Multi-Objective Portfolio
Optimisation Problem [0.0]
This paper studies multi-objective portfolio optimisation.
It aims to achieve the objective of maximising the expected return while minimising the risk of a given rate of return.
arXiv Detail & Related papers (2023-04-13T17:05:45Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions.
This paper studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network.
We show that our approach achieves superior performance over de facto baselines with more than 95.8% cost eduction in a fast convergence speed.
arXiv Detail & Related papers (2022-10-31T13:03:16Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Incentive Mechanism Design for Resource Sharing in Collaborative Edge
Learning [106.51930957941433]
In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous.
This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning scheme known as edge learning.
arXiv Detail & Related papers (2020-05-31T12:45:06Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.