A New Way: Kronecker-Factored Approximate Curvature Deep Hedging and its Benefits
- URL: http://arxiv.org/abs/2411.15002v1
- Date: Fri, 22 Nov 2024 15:19:40 GMT
- Title: A New Way: Kronecker-Factored Approximate Curvature Deep Hedging and its Benefits
- Authors: Tsogt-Ochir Enkhbayar,
- Abstract summary: This paper advances the computational efficiency of Deep Hedging frameworks through the novel integration of Kronecker-Factored Approximate Curvature (K-FAC) optimization.
The proposed architecture couples Long Short-Term Memory (LSTM) networks with K-FAC second-order optimization.
- Score: 0.0
- License:
- Abstract: This paper advances the computational efficiency of Deep Hedging frameworks through the novel integration of Kronecker-Factored Approximate Curvature (K-FAC) optimization. While recent literature has established Deep Hedging as a data-driven alternative to traditional risk management strategies, the computational burden of training neural networks with first-order methods remains a significant impediment to practical implementation. The proposed architecture couples Long Short-Term Memory (LSTM) networks with K-FAC second-order optimization, specifically addressing the challenges of sequential financial data and curvature estimation in recurrent networks. Empirical validation using simulated paths from a calibrated Heston stochastic volatility model demonstrates that the K-FAC implementation achieves marked improvements in convergence dynamics and hedging efficacy. The methodology yields a 78.3% reduction in transaction costs ($t = 56.88$, $p < 0.001$) and a 34.4% decrease in profit and loss (P&L) variance compared to Adam optimization. Moreover, the K-FAC-enhanced model exhibits superior risk-adjusted performance with a Sharpe ratio of 0.0401, contrasting with $-0.0025$ for the baseline model. These results provide compelling evidence that second-order optimization methods can materially enhance the tractability of Deep Hedging implementations. The findings contribute to the growing literature on computational methods in quantitative finance while highlighting the potential for advanced optimization techniques to bridge the gap between theoretical frameworks and practical applications in financial markets.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Dynamic Portfolio Rebalancing: A Hybrid new Model Using GNNs and Pathfinding for Cost Efficiency [0.0]
This paper introduces a novel approach to optimizing portfolio rebalancing by integrating Graph Neural Networks (GNNs) for predicting transaction costs and Dijkstra's algorithm for identifying cost-efficient rebalancing paths.
Empirical results show that this hybrid approach significantly reduces transaction costs, offering a powerful tool for portfolio managers.
arXiv Detail & Related papers (2024-10-02T11:00:52Z) - A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
We present a novel nonlinear programming-based approach to fine-tune pre-trained neural networks to improve robustness against adversarial attacks while maintaining accuracy on clean data.
arXiv Detail & Related papers (2024-09-18T18:37:14Z) - Improving Realized LGD Approximation: A Novel Framework with XGBoost for Handling Missing Cash-Flow Data [0.0]
We develop an XGBoost model that does not rely on cash-flow data yet enhances the accuracy of realized LGD estimation.
A novel aspect of our work is the detailed exploration of the delta outstanding approach and the methodology for addressing conditions of limited access to cash-flow data.
arXiv Detail & Related papers (2024-06-25T06:41:09Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Optimal Linear Signal: An Unsupervised Machine Learning Framework to
Optimize PnL with Linear Signals [0.0]
This study presents an unsupervised machine learning approach for optimizing Profit and Loss (PnL) in quantitative finance.
Our algorithm, akin to an unsupervised variant of linear regression, maximizes the Sharpe Ratio of PnL generated from signals constructed linearly from external variables.
arXiv Detail & Related papers (2023-11-22T21:10:59Z) - Commodities Trading through Deep Policy Gradient Methods [0.0]
It formulates the commodities trading problem as a continuous, discrete-time dynamical system.
Two policy algorithms, namely actor-based and actor-critic-based approaches, are introduced.
Backtesting on front-month natural gas futures demonstrates that DRL models increase the Sharpe ratio by $83%$ compared to the buy-and-hold baseline.
arXiv Detail & Related papers (2023-08-10T17:21:12Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.