論文の概要: Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement
- arxiv url: http://arxiv.org/abs/2410.01869v1
- Date: Wed, 2 Oct 2024 17:21:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 10:14:15.510516
- Title: Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement
- Title(参考訳): SQL品質測定によるテキストからSQLへのLLM微調整の強化
- Authors: Shouvon Sarker, Xishuang Dong, Xiangfang Li, Lijun Qian,
- Abstract要約: Text-to-sにより、専門家でないユーザは、自然言語クエリを使用してデータベースから要求された情報を取得することができる。
GPT4やT5のような現在の最先端(SOTA)モデルは、BIRDのような大規模ベンチマークで素晴らしいパフォーマンスを示している。
本稿では,テキスト・ツー・ス・パフォーマンスを向上させるためにSQL Qualityのみを必要とする新しい手法を提案する。
- 参考スコア(独自算出の注目度): 1.392448435105643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-SQLs enables non-expert users to effortlessly retrieve desired information from relational databases using natural language queries. While recent advancements, particularly with Large Language Models (LLMs) like GPT and T5, have shown impressive performance on large-scale benchmarks such as BIRD, current state-of-the-art (SOTA) LLM-based Text-to-SQLs models often require significant efforts to develop auxiliary tools like SQL classifiers to achieve high performance. This paper proposed a novel approach that only needs SQL Quality Measurement to enhance LLMs-based Text-to-SQLs performance. It establishes a SQL quality evaluation mechanism to assess the generated SQL queries against predefined criteria and actual database responses. This feedback loop enables continuous learning and refinement of model outputs based on both syntactic correctness and semantic accuracy. The proposed method undergoes comprehensive validation on the BIRD benchmark, assessing Execution Accuracy (EX) and Valid Efficiency Score (VES) across various Text-to-SQLs difficulty levels. Experimental results reveal competitive performance in both EX and VES compared to SOTA models like GPT4 and T5.
- Abstract(参考訳): テキストからSQLへの変換により、専門家でないユーザは、自然言語クエリを使用して、リレーショナルデータベースから望ましい情報を取得することができる。
最近の進歩、特にGPTやT5のようなLarge Language Models(LLMs)は、BIRDのような大規模ベンチマークで顕著なパフォーマンスを示しているが、現在の最先端(SOTA)のLLMベースのText-to-SQLsモデルは、SQL分類器のような補助的なツールを開発するのに多大な努力を必要とすることが多い。
本稿では,LLMをベースとしたテキスト・トゥ・SQLの性能向上のために,SQL品質測定のみを必要とする新しい手法を提案する。
事前に定義された基準と実際のデータベース応答に対して生成したSQLクエリを評価するためのSQL品質評価メカニズムを確立する。
このフィードバックループは、構文的正確性と意味的正確性の両方に基づいて、連続的な学習とモデル出力の洗練を可能にする。
提案手法はBIRDベンチマークの総合的な検証を行い,実行精度(EX)と検証効率スコア(VES)をテキスト対SQLの難易度で評価する。
GPT4 や T5 などの SOTA モデルと比較して,EX と VES の競合性能が示された。
関連論文リスト
- Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation [25.638927795540454]
自然言語クエリをアクセス可能なクエリに変換することを目的としたText-to-Noタスクを導入する。
この分野での研究を促進するために、我々はTEND(Text-to-Noデータセットのショートインターフェース)という、このタスクのための大規模かつオープンソースのデータセットをリリースした。
また,SLM(Small Language Model)支援とRAG(Retrieval-augmented Generation)支援の多段階フレームワークSMARTを設計した。
論文 参考訳(メタデータ) (2025-02-16T17:01:48Z) - E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL [1.187832944550453]
E-Seekは、直接スキーマリンクと候補述語拡張を通じてこれらの課題に対処するように設計された、新しいパイプラインである。
E-Seekは、関連するデータベース項目(テーブル、列、値)と条件を直接質問とsql構築計画に組み込むことで、自然言語クエリを強化し、クエリとデータベース構造の間のギャップを埋める。
総合的な評価は、E-Seekが競争性能、特に66.29%の実行精度で複雑なクエリに優れていることを示している。
論文 参考訳(メタデータ) (2024-09-25T09:02:48Z) - FLEX: Expert-level False-Less EXecution Metric for Reliable Text-to-SQL Benchmark [8.445403382578167]
本稿では,テキスト対技術システム評価の新しいアプローチであるFLEX(False-Lesscution Execution)を紹介する。
我々の基準は、包括的文脈と洗練された基準で、人間専門家との合意を改善します。
この研究は、テキスト・トゥ・テクニカル・システムのより正確でニュアンスな評価に寄与し、この分野における最先端のパフォーマンスの理解を再構築する可能性がある。
論文 参考訳(メタデータ) (2024-09-24T01:40:50Z) - DAC: Decomposed Automation Correction for Text-to-SQL [51.48239006107272]
De Automation Correction (DAC)を導入し、エンティティリンクとスケルトン解析を分解することでテキストから合成を補正する。
また,本手法では,ベースライン法と比較して,スパイダー,バード,カグルDBQAの平均値が平均3.7%向上することを示した。
論文 参考訳(メタデータ) (2024-08-16T14:43:15Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - DFIN-SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy
in Large-Scale Databases [0.0]
本稿では,DIN-composed (Decomposed-In-Context) の革新的な拡張であるDFINを紹介する。
DFINは、不正確な主要なソースであるスキーマリンクエラーに対処することで、テキストからコンポジションへの変換を強化する。
実世界の挑戦的なベンチマークであるBIRDデータセットの評価では、DFINは効率だけでなく精度も向上し、51.69のスコアが得られた。
論文 参考訳(メタデータ) (2024-03-01T07:14:45Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Graphix-T5: Mixing Pre-Trained Transformers with Graph-Aware Layers for
Text-to-SQL Parsing [56.232873134174056]
テキストからテキストへのパースにおける大きな課題の1つはドメインの一般化である。
そこで本研究では,テキスト・トゥ・テキスト・パーシングのための特殊なコンポーネントを備えた事前学習されたテキスト・ツー・テキスト・トランスフォーマー・モデルをさらに強化する方法について検討する。
この目的のために,レイヤを持つグラフ認識モデルによって拡張された新しいアーキテクチャ GRAPHIX-T5 を提案する。
論文 参考訳(メタデータ) (2023-01-18T13:29:05Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。