論文の概要: DB-Explore: Automated Database Exploration and Instruction Synthesis for Text-to-SQL
- arxiv url: http://arxiv.org/abs/2503.04959v1
- Date: Thu, 06 Mar 2025 20:46:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:22:31.640929
- Title: DB-Explore: Automated Database Exploration and Instruction Synthesis for Text-to-SQL
- Title(参考訳): DB-Explore: テキストからSQLへの自動データベース探索と命令合成
- Authors: Haoyuan Ma, Yongliang Shen, Hengwei Liu, Wenqi Zhang, Haolei Xu, Qiuying Peng, Jun Wang, Weiming Lu,
- Abstract要約: 大規模言語モデル(LLM)を用いたデータベース理解のための新しいフレームワークDB-Exploreを提案する。
我々のフレームワークは、多様なサンプリング戦略と自動命令生成を通じて、包括的なデータベース理解を可能にする。
Qwen2.5-coder-7Bモデルに基づくオープンソース実装は、比較評価において複数のGPT-4駆動のテキスト・ツー・コーダシステムより優れている。
- 参考スコア(独自算出の注目度): 18.915121803834698
- License:
- Abstract: Recent text-to-SQL systems powered by large language models (LLMs) have demonstrated remarkable performance in translating natural language queries into SQL. However, these systems often struggle with complex database structures and domain-specific queries, as they primarily focus on enhancing logical reasoning and SQL syntax while overlooking the critical need for comprehensive database understanding. To address this limitation, we propose DB-Explore, a novel framework that systematically aligns LLMs with database knowledge through automated exploration and instruction synthesis. DB-Explore constructs database graphs to capture complex relational schemas, leverages GPT-4 to systematically mine structural patterns and semantic knowledge, and synthesizes instructions to distill this knowledge for efficient fine-tuning of LLMs. Our framework enables comprehensive database understanding through diverse sampling strategies and automated instruction generation, bridging the gap between database structures and language models. Experiments conducted on the SPIDER and BIRD benchmarks validate the effectiveness of DB-Explore, achieving an execution accuracy of 52.1% on BIRD and 84.0% on SPIDER. Notably, our open-source implementation, based on the Qwen2.5-coder-7B model, outperforms multiple GPT-4-driven text-to-SQL systems in comparative evaluations, and achieves near state-of-the-art performance with minimal computational cost.
- Abstract(参考訳): 近年,大規模言語モデル(LLM)を利用したテキスト-SQLシステムでは,自然言語クエリのSQLへの変換性能が著しく向上している。
しかしながら、これらのシステムは複雑なデータベース構造やドメイン固有のクエリに悩まされることが多い。
この制限に対処するために、自動探索と命令合成によりLLMとデータベース知識を体系的に整合させるDB-Exploreを提案する。
DB-Exploreは、複雑なリレーショナルスキーマをキャプチャするためにデータベースグラフを構築し、GPT-4を利用して構造パターンと意味知識を体系的にマイニングし、この知識をLLMの効率的な微調整のために蒸留するための命令を合成する。
我々のフレームワークは、多様なサンプリング戦略と自動命令生成を通じて包括的なデータベース理解を可能にし、データベース構造と言語モデルとのギャップを埋める。
SPIDERおよびBIRDベンチマークで実施された実験は、DB-Exploreの有効性を検証し、BIRDで52.1%、SPIDERで84.0%の実行精度を達成した。
特に、Qwen2.5-coder-7Bモデルに基づくオープンソース実装は、比較評価において複数のGPT-4駆動のテキスト-SQLシステムより優れており、計算コストを最小にすることで、ほぼ最先端のパフォーマンスを実現している。
関連論文リスト
- Bridging the Gap: Transforming Natural Language Questions into SQL Queries via Abstract Query Pattern and Contextual Schema Markup [6.249316460506702]
構造的マッピングギャップと語彙的マッピングギャップの2つの重要なギャップを識別する。
PAS関連は87.9%の実行精度を達成し、BIRDデータセットの64.67%の実行精度を導いた。
スパイダーベンチマークの結果は87.9%の精度でスパイダーベンチマークの最先端を新たに設定し、BIRDデータセットで64.67%の精度で結果を導いた。
論文 参考訳(メタデータ) (2025-02-20T16:11:27Z) - Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation [25.638927795540454]
自然言語クエリをアクセス可能なクエリに変換することを目的としたText-to-Noタスクを導入する。
この分野での研究を促進するために、我々はTEND(Text-to-Noデータセットのショートインターフェース)という、このタスクのための大規模かつオープンソースのデータセットをリリースした。
また,SLM(Small Language Model)支援とRAG(Retrieval-augmented Generation)支援の多段階フレームワークSMARTを設計した。
論文 参考訳(メタデータ) (2025-02-16T17:01:48Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-sにより、専門家でないユーザは、自然言語クエリを使用してデータベースから要求された情報を取得することができる。
GPT4やT5のような現在の最先端(SOTA)モデルは、BIRDのような大規模ベンチマークで素晴らしいパフォーマンスを示している。
本稿では,テキスト・ツー・ス・パフォーマンスを向上させるためにSQL Qualityのみを必要とする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T17:21:51Z) - E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL [1.187832944550453]
E-Seekは、直接スキーマリンクと候補述語拡張を通じてこれらの課題に対処するように設計された、新しいパイプラインである。
E-Seekは、関連するデータベース項目(テーブル、列、値)と条件を直接質問とsql構築計画に組み込むことで、自然言語クエリを強化し、クエリとデータベース構造の間のギャップを埋める。
総合的な評価は、E-Seekが競争性能、特に66.29%の実行精度で複雑なクエリに優れていることを示している。
論文 参考訳(メタデータ) (2024-09-25T09:02:48Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
最近のText-to-Yourselfメソッドは通常、"巨大な"データベース上での大幅なパフォーマンス劣化に悩まされる。
我々は,新しいテキスト・ツー・ユー・セルフ LLM ベースのマルチエージェント協調フレームワーク MAC を紹介する。
我々のフレームワークでは、GPT-4を全てのエージェントタスクの強力なバックボーンとして利用し、フレームワークの上限を決定する。
次に、Code 7Bを活用することで、オープンソースの命令フォローモデルであるsql-Llamaを微調整し、GPT-4のように全てのタスクを達成します。
論文 参考訳(メタデータ) (2023-12-18T14:40:20Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。