Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking
- URL: http://arxiv.org/abs/2410.01906v1
- Date: Wed, 2 Oct 2024 18:05:03 GMT
- Title: Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking
- Authors: Aakash Varma Nadimpalli, Ajita Rattani,
- Abstract summary: We propose a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication.
Our proposed framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks.
- Score: 6.246098300155482
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the significant advances in deep generative models for image and video synthesis, Deepfakes and manipulated media have raised severe societal concerns. Conventional machine learning classifiers for deepfake detection often fail to cope with evolving deepfake generation technology and are susceptible to adversarial attacks. Alternatively, invisible image watermarking is being researched as a proactive defense technique that allows media authentication by verifying an invisible secret message embedded in the image pixels. A handful of invisible image watermarking techniques introduced for media authentication have proven vulnerable to basic image processing operations and watermark removal attacks. In response, we have proposed a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication. Our proposed watermarking framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks. This is facilitated through a unique architecture of our proposed technique consisting of critic and adversarial networks that enforce high image quality and resiliency to watermark removal efforts, respectively, along with the backbone encoder-decoder and the discriminator networks. Thorough experimental investigations on SOTA facial Deepfake datasets demonstrate that our proposed model can embed a $64$-bit secret as an imperceptible image watermark that can be recovered with a high-bit recovery accuracy when benign image processing operations are applied while being non-recoverable when unseen Deepfake manipulations are applied. In addition, our proposed watermarking technique demonstrates high resilience to several white-box and black-box watermark removal attacks. Thus, obtaining state-of-the-art performance.
Related papers
- LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks [7.965986856780787]
This paper introduces a novel training-free landmark perceptual watermark, LampMark for short.
We first analyze the structure-sensitive characteristics of Deepfake manipulations and devise a secure and confidential transformation pipeline.
We present an end-to-end watermarking framework that imperceptibly embeds and extracts watermarks concerning the images to be protected.
arXiv Detail & Related papers (2024-11-26T08:24:56Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - Robust Identity Perceptual Watermark Against Deepfake Face Swapping [8.276177968730549]
Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models.
We propose the first robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping.
arXiv Detail & Related papers (2023-11-02T16:04:32Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
We analyze the robustness of various AI-image detectors including watermarking and deepfake detectors.
We show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images identified as watermarked ones.
arXiv Detail & Related papers (2023-09-29T18:30:29Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisible watermarks safeguard images' copyrights by embedding hidden messages only detectable by owners.
We propose a family of regeneration attacks to remove these invisible watermarks.
The proposed attack method first adds random noise to an image to destroy the watermark and then reconstructs the image.
arXiv Detail & Related papers (2023-06-02T23:29:28Z) - FaceSigns: Semi-Fragile Neural Watermarks for Media Authentication and
Countering Deepfakes [25.277040616599336]
Deepfakes and manipulated media are becoming a prominent threat due to the recent advances in realistic image and video synthesis techniques.
We introduce a deep learning based semi-fragile watermarking technique that allows media authentication by verifying an invisible secret message embedded in the image pixels.
arXiv Detail & Related papers (2022-04-05T03:29:30Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for
Combating Deepfakes [74.18502861399591]
Malicious application of deepfakes (i.e., technologies can generate target faces or face attributes) has posed a huge threat to our society.
We propose a universal adversarial attack method on deepfake models, to generate a Cross-Model Universal Adversarial Watermark (CMUA-Watermark)
Experimental results demonstrate that the proposed CMUA-Watermark can effectively distort the fake facial images generated by deepfake models.
arXiv Detail & Related papers (2021-05-23T07:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.