論文の概要: Provably Accurate Shapley Value Estimation via Leverage Score Sampling
- arxiv url: http://arxiv.org/abs/2410.01917v1
- Date: Wed, 2 Oct 2024 18:15:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 10:04:30.268748
- Title: Provably Accurate Shapley Value Estimation via Leverage Score Sampling
- Title(参考訳): レバレッジスコアサンプリングによるシェープ値推定の精度向上
- Authors: Christopher Musco, R. Teal Witter,
- Abstract要約: 本稿では,Kernel SHAP の軽量な修正である Leverage SHAP を紹介する。
提案手法は,強力な回帰ツールであるレバレッジスコアサンプリングを用いて,シェープ値の推定とアクティブラーニングの関連性を利用する。
- 参考スコア(独自算出の注目度): 12.201705893125775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Originally introduced in game theory, Shapley values have emerged as a central tool in explainable machine learning, where they are used to attribute model predictions to specific input features. However, computing Shapley values exactly is expensive: for a general model with $n$ features, $O(2^n)$ model evaluations are necessary. To address this issue, approximation algorithms are widely used. One of the most popular is the Kernel SHAP algorithm, which is model agnostic and remarkably effective in practice. However, to the best of our knowledge, Kernel SHAP has no strong non-asymptotic complexity guarantees. We address this issue by introducing Leverage SHAP, a light-weight modification of Kernel SHAP that provides provably accurate Shapley value estimates with just $O(n\log n)$ model evaluations. Our approach takes advantage of a connection between Shapley value estimation and agnostic active learning by employing leverage score sampling, a powerful regression tool. Beyond theoretical guarantees, we show that Leverage SHAP consistently outperforms even the highly optimized implementation of Kernel SHAP available in the ubiquitous SHAP library [Lundberg & Lee, 2017].
- Abstract(参考訳): もともとゲーム理論で導入されたShapleyの値は、モデル予測を特定の入力特徴に属性付けるために使用される、説明可能な機械学習の中心的なツールとして登場した。
しかし、Shapley値の計算には正確なコストがかかる:$n$機能を持つ一般モデルの場合、$O(2^n)$モデル評価が必要である。
この問題に対処するため、近似アルゴリズムが広く使われている。
最もポピュラーなアルゴリズムの1つは、モデルに依存しず、実際に非常に効果的であるKernel SHAPアルゴリズムである。
しかしながら、我々の知る限りでは、Kernel SHAPは非漸近的な複雑性を保証する強力な保証を持っていない。
本稿では,Kernel SHAP の軽量な修正である Leverage SHAP を導入することでこの問題に対処する。
提案手法は,強力な回帰ツールであるレバレッジ・スコア・サンプリングを用いて,シェープリー値推定と非能動的学習の関連性を利用する。
理論的保証以外にも、Leverage SHAPは、ユビキタスなSHAPライブラリ(Lundberg & Lee, 2017)で利用可能なKernel SHAPの高度に最適化された実装でさえ、一貫してパフォーマンスが向上していることを示す。
関連論文リスト
- Improving the Sampling Strategy in KernelSHAP [0.8057006406834466]
KernelSHAPフレームワークは、重み付けされた条件付き期待値のサンプルサブセットを用いて、Shapley値の近似を可能にする。
本稿では,現在最先端戦略における重みの分散を低減するための安定化手法,サンプルサブセットに基づいてShapleyカーネル重みを補正する新しい重み付け方式,および重要なサブセットを包含して修正されたShapleyカーネル重みと統合する簡単な戦略を提案する。
論文 参考訳(メタデータ) (2024-10-07T10:02:31Z) - Energy-based Model for Accurate Shapley Value Estimation in Interpretable Deep Learning Predictive Modeling [7.378438977893025]
EmSHAPはShapley値推定のためのエネルギーベースモデルである。
任意の特徴部分集合の下では、Shapleyコントリビューション関数の期待を推定する。
論文 参考訳(メタデータ) (2024-04-01T12:19:33Z) - Accelerated Shapley Value Approximation for Data Evaluation [3.707457963532597]
機械学習問題の構造的特性を活用することにより,データポイントのシェープ値をより効率的に近似できることを示す。
我々の分析は、データバリュエーションの文脈において、小さなサブセットで訓練されたモデルはより重要であることを示唆している。
論文 参考訳(メタデータ) (2023-11-09T13:15:36Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
iid 観測のペア $(x_t sim p, x'_t sim q)$ が時間の経過とともに観測されるような,オンラインな非パラメトリック LRE (OLRE) のための新しいフレームワークを提案する。
本稿では,OLRE法の性能に関する理論的保証と,合成実験における実証的検証について述べる。
論文 参考訳(メタデータ) (2023-11-03T13:20:11Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
カーネルベース最適輸送(OT)推定器は、サンプルからOT問題に対処するための代替的機能的推定手順を提供する。
SSN法は, 標準正規性条件下でのグローバル収束率$O (1/sqrtk)$, 局所二次収束率を達成できることを示す。
論文 参考訳(メタデータ) (2023-10-21T18:48:45Z) - An Efficient Shapley Value Computation for the Naive Bayes Classifier [0.0]
本稿では, 単純ベイズ分類器の場合のShapley値の正確な解析式を提案する。
以上の結果から,本提案はアルゴリズムの複雑さを低く抑えた有意な結果をもたらすことが示唆された。
論文 参考訳(メタデータ) (2023-07-31T14:39:10Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - Generalized Differentiable RANSAC [95.95627475224231]
$nabla$-RANSACは、ランダム化された堅牢な推定パイプライン全体を学ぶことができる、微分可能なRANSACである。
$nabla$-RANSACは、精度という点では最先端のシステムよりも優れているが、精度は低い。
論文 参考訳(メタデータ) (2022-12-26T15:13:13Z) - A $k$-additive Choquet integral-based approach to approximate the SHAP
values for local interpretability in machine learning [8.637110868126546]
本稿では,Shapley値に基づく機械学習モデルに対する解釈可能性の提供を目的とする。
Kernel SHAPと呼ばれるSHAPベースの手法は、計算労力を少なくしてそのような値を近似する効率的な戦略を採用する。
得られた結果から,提案手法ではSHAP値に近似するために属性の連立性に関する計算がより少ないことが確認された。
論文 参考訳(メタデータ) (2022-11-03T22:34:50Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
我々は、最小二乗値スタイルのアルゴリズムで一般的に使用される、より標準的なベルマン誤差の概念の下での反復が、ほぼ最適値関数の学習において強力なPAC保証を提供することを示す。
そこで本稿では,任意の(線形な)報酬関数に対して,最適に近いポリシーを学習するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2020-08-18T04:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。