論文の概要: Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo
- arxiv url: http://arxiv.org/abs/2410.01920v3
- Date: Wed, 9 Oct 2024 20:20:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 10:04:30.259901
- Title: Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo
- Title(参考訳): 逐次モンテカルロによる数学問題のステップバイステップ推論
- Authors: Shengyu Feng, Xiang Kong, Shuang Ma, Aonan Zhang, Dong Yin, Chong Wang, Ruoming Pang, Yiming Yang,
- Abstract要約: Twisted Sequential Monte Carlo(TSMC)に基づく新しい検証手法を提案する。
TSMCを大規模言語モデルに適用し、部分解に対する将来的な報酬を推定する。
このアプローチは、ステップワイドなヒューマンアノテーションを必要としない、より直接的なトレーニングターゲットをもたらす。
- 参考スコア(独自算出の注目度): 55.452453947359736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Augmenting the multi-step reasoning abilities of Large Language Models (LLMs) has been a persistent challenge. Recently, verification has shown promise in improving solution consistency by evaluating generated outputs. However, current verification approaches suffer from sampling inefficiencies, requiring a large number of samples to achieve satisfactory performance. Additionally, training an effective verifier often depends on extensive process supervision, which is costly to acquire. In this paper, we address these limitations by introducing a novel verification method based on Twisted Sequential Monte Carlo (TSMC). TSMC sequentially refines its sampling effort to focus exploration on promising candidates, resulting in more efficient generation of high-quality solutions. We apply TSMC to LLMs by estimating the expected future rewards at partial solutions. This approach results in a more straightforward training target that eliminates the need for step-wise human annotations. We empirically demonstrate the advantages of our method across multiple math benchmarks, and also validate our theoretical analysis of both our approach and existing verification methods.
- Abstract(参考訳): 大規模言語モデル(LLM)の多段階推論能力の拡大は、永続的な課題である。
近年, 結果の検証により, 解の整合性の向上が期待できる。
しかし、現在の検証手法はサンプリング非効率に悩まされており、十分な性能を達成するために多数のサンプルを必要とする。
さらに、有効な検証器の訓練は、取得にコストがかかる広範囲なプロセスの監督に依存することが多い。
本稿では,TSMC(Twisted Sequential Monte Carlo)に基づく新しい検証手法を導入することにより,これらの制約に対処する。
TSMCは、有望な候補に焦点を合わせるためのサンプリング努力を順次改善し、その結果、高品質なソリューションをより効率的に生成する。
TSMC を LLM に適用し,部分解に対する将来的な報酬を推定する。
このアプローチは、ステップワイドなヒューマンアノテーションを必要としない、より直接的なトレーニングターゲットをもたらす。
提案手法の利点を複数のベンチマークベンチマークで実証し,提案手法と既存検証手法の理論的解析を行った。
関連論文リスト
- Uncertainty-Aware Step-wise Verification with Generative Reward Models [42.17917357636397]
生成報酬モデルを用いたステップワイド検証の信頼性を高めるために,不確実性定量化(UQ)を活用することを提案する。
ステップワイド検証におけるPRMの不確実性を定量化するための既存手法よりも優れた新しいUQ手法であるCoT Entropyを導入する。
論文 参考訳(メタデータ) (2025-02-16T20:00:56Z) - Diversified Sampling Improves Scaling LLM inference [31.18762591875725]
DivSamplingは、候補解の多様性を高めるために設計された、斬新で多用途なサンプリング技術である。
理論解析により, 微妙な仮定の下では, 種々のプロンプトから発生する応答の誤り率は, 定常プロンプトによる応答よりも有意に低いことが示された。
論文 参考訳(メタデータ) (2025-02-16T07:37:58Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な機能を示した。
本稿では,新しいグラフィカルモデルを用いてLLM推論を定式化する統一確率的フレームワークを提案する。
本稿では,Bootstrapping Reinforced Thinking Process (BRiTE)アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2025-01-31T02:39:07Z) - Mitigating Tail Narrowing in LLM Self-Improvement via Socratic-Guided Sampling [38.7578639980701]
自己改善手法により、大規模な言語モデルがソリューション自体を生成できる。
モデルでは、簡単なクエリをオーバーサンプルし、まだマスターしていないクエリをアンダーサンプルする傾向があります。
本稿では,重み付きデータ抽出の効率化を目的とした,ガイド付き自己改善(GSI)について紹介する。
論文 参考訳(メタデータ) (2024-11-01T17:18:45Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - On Speeding Up Language Model Evaluation [48.51924035873411]
LLM(Large Language Models)を用いたプロンプトベースの手法の開発には、多くの意思決定が必要である。
この課題に対処するための新しい手法を提案する。
典型的に必要とされるリソースの5~15%しか必要とせず,トップパフォーマンスの手法を識別できることが示される。
論文 参考訳(メタデータ) (2024-07-08T17:48:42Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。