Model Comparisons: XNet Outperforms KAN
- URL: http://arxiv.org/abs/2410.02033v1
- Date: Wed, 2 Oct 2024 20:59:47 GMT
- Title: Model Comparisons: XNet Outperforms KAN
- Authors: Xin Li, Zhihong Jeff Xia, Xiaotao Zheng,
- Abstract summary: XNet is a novel algorithm that employs the complex-valued Cauchy integral formula.
XNet significant improves speed and accuracy across various tasks in both low and high-dimensional spaces.
- Score: 3.9426000822656224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the fields of computational mathematics and artificial intelligence, the need for precise data modeling is crucial, especially for predictive machine learning tasks. This paper explores further XNet, a novel algorithm that employs the complex-valued Cauchy integral formula, offering a superior network architecture that surpasses traditional Multi-Layer Perceptrons (MLPs) and Kolmogorov-Arnold Networks (KANs). XNet significant improves speed and accuracy across various tasks in both low and high-dimensional spaces, redefining the scope of data-driven model development and providing substantial improvements over established time series models like LSTMs.
Related papers
- DenseGNN: universal and scalable deeper graph neural networks for high-performance property prediction in crystals and molecules [4.648990939177395]
We introduce DenseGNN, which employs Dense Connectivity Network (DCN), Hierarchical Node-Edge-Graph Residual Networks (HRN), and Local Structure Order Parameters Embedding (LOPE)
DenseGNN achieves state-of-the-art performance on datasets such as JARVIS-DFT, Materials Project, and QM9, improving the performance of models like GIN, Schnet, and Hamnet on materials datasets.
arXiv Detail & Related papers (2025-01-05T13:41:28Z) - A Multi-Fidelity Graph U-Net Model for Accelerated Physics Simulations [1.2430809884830318]
We propose a novel GNN architecture, Multi-Fidelity U-Net, that utilizes the advantages of the multi-fidelity methods for enhancing the performance of the GNN model.
We show that the proposed approach performs significantly better in accuracy and data requirement.
We also present Multi-Fidelity U-Net Lite, a faster version of the proposed architecture, with 35% faster training, with 2 to 5% reduction in accuracy.
arXiv Detail & Related papers (2024-12-19T20:09:38Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks [0.2499907423888049]
Digital Twin Networks (DTN) technology is expected to become the foundation technology for autonomous networks.
DTN has the advantage of being able to operate and system networks based on real-time collected data in a closed-loop system.
Various AI research and standardization work is ongoing to optimize the use of DTN.
arXiv Detail & Related papers (2024-05-14T09:55:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Stochastic Configuration Machines for Industrial Artificial Intelligence [4.57421617811378]
configuration networks (SCNs) play a key role in industrial artificial intelligence (IAI)
This paper proposes a new randomized learner model, termed configuration machines (SCMs) to stress effective modelling and data size saving.
Experimental studies are carried out over some benchmark datasets and three industrial applications.
arXiv Detail & Related papers (2023-08-25T05:52:41Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations [0.5185522256407782]
We present MAgNET, which extends the well-known convolutional neural networks to accommodate arbitrary graph-structured data.
We demonstrate the predictive capabilities of MAgNET in surrogate modeling for non-linear finite element simulations in the mechanics of solids.
arXiv Detail & Related papers (2022-11-01T19:23:45Z) - DAMNETS: A Deep Autoregressive Model for Generating Markovian Network
Time Series [6.834250594353335]
Generative models for network time series (also known as dynamic graphs) have tremendous potential in fields such as epidemiology, biology and economics.
Here we introduce DAMNETS, a scalable deep generative model for network time series.
arXiv Detail & Related papers (2022-03-28T18:14:04Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Computation on Sparse Neural Networks: an Inspiration for Future
Hardware [20.131626638342706]
We describe the current status of the research on the computation of sparse neural networks.
We discuss the model accuracy influenced by the number of weight parameters and the structure of the model.
We show that for practically complicated problems, it is more beneficial to search large and sparse models in the weight dominated region.
arXiv Detail & Related papers (2020-04-24T19:13:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.