論文の概要: Hard Negative Sample Mining for Whole Slide Image Classification
- arxiv url: http://arxiv.org/abs/2410.02212v1
- Date: Thu, 3 Oct 2024 04:58:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 08:06:03.780487
- Title: Hard Negative Sample Mining for Whole Slide Image Classification
- Title(参考訳): 全スライド画像分類のためのハード負のサンプルマイニング
- Authors: Wentao Huang, Xiaoling Hu, Shahira Abousamra, Prateek Prasanna, Chao Chen,
- Abstract要約: 我々は微調整中に硬い負のサンプルをマイニングすることを提案する。
これにより、より良い機能表現を得ることができ、トレーニングコストを削減できます。
また、これらのハードネガティブなサンプルをよりよく活用するために、パッチワイドなMILランキングの損失を新たに提案する。
- 参考スコア(独自算出の注目度): 15.43291361140284
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Weakly supervised whole slide image (WSI) classification is challenging due to the lack of patch-level labels and high computational costs. State-of-the-art methods use self-supervised patch-wise feature representations for multiple instance learning (MIL). Recently, methods have been proposed to fine-tune the feature representation on the downstream task using pseudo labeling, but mostly focusing on selecting high-quality positive patches. In this paper, we propose to mine hard negative samples during fine-tuning. This allows us to obtain better feature representations and reduce the training cost. Furthermore, we propose a novel patch-wise ranking loss in MIL to better exploit these hard negative samples. Experiments on two public datasets demonstrate the efficacy of these proposed ideas. Our codes are available at https://github.com/winston52/HNM-WSI
- Abstract(参考訳): パッチレベルラベルの欠如と高い計算コストのため,WSI分類の弱さが問題となっている。
State-of-the-artメソッドは、MIL(Multiple Case Learning)のために、セルフ教師付きパッチワイズ機能表現を使用する。
近年、擬似ラベリングを用いて下流タスクの特徴表現を微調整する手法が提案されているが、主に高品質な正のパッチの選択に焦点を当てている。
本稿では,微調整中における硬質陰性試料のマイニングについて述べる。
これにより、より良い機能表現を得ることができ、トレーニングコストを削減できます。
さらに、これらのハードネガティブなサンプルをよりよく活用するために、パッチワイドなMILランキングの損失を新たに提案する。
2つの公開データセットの実験は、これらの提案されたアイデアの有効性を実証している。
私たちのコードはhttps://github.com/winston52/HNM-WSIで利用可能です。
関連論文リスト
- Task-oriented Embedding Counts: Heuristic Clustering-driven Feature Fine-tuning for Whole Slide Image Classification [1.292108130501585]
本稿では,クラスタリング駆動型機能微調整法(HC-FT)を提案する。
提案手法はCAMELYON16とBRACSの両方で評価され,それぞれ97.13%,85.85%のAUCが得られた。
論文 参考訳(メタデータ) (2024-06-02T08:53:45Z) - Compact and De-biased Negative Instance Embedding for Multi-Instance
Learning on Whole-Slide Image Classification [3.2721526745176144]
半超音波信号を導入し、スライディング間の変動を抑えるとともに、通常のパッチの変動の共通要因を捉える。
本手法は,カメリオン16およびTGA肺がんを含む2つのWSIデータセットを用いて検討した。
論文 参考訳(メタデータ) (2024-02-16T11:28:50Z) - Rethinking Multiple Instance Learning for Whole Slide Image
Classification: A Bag-Level Classifier is a Good Instance-Level Teacher [22.080213609228547]
複数のインスタンス学習は、WSI(Whole Slide Image)分類において約束されている。
既存の手法は一般に2段階のアプローチを採用しており、学習不可能な特徴埋め込み段階と分類器訓練段階からなる。
バッグレベルの分類器は、良いインスタンスレベルの教師になれると提案する。
論文 参考訳(メタデータ) (2023-12-02T10:16:03Z) - MoBYv2AL: Self-supervised Active Learning for Image Classification [57.4372176671293]
画像分類のための自己教師型アクティブラーニングフレームワークであるMoBYv2ALを提案する。
私たちの貢献は、最も成功した自己教師付き学習アルゴリズムであるMoBYをALパイプラインに持ち上げることです。
近年のAL法と比較すると,最先端の結果が得られている。
論文 参考訳(メタデータ) (2023-01-04T10:52:02Z) - SparseDet: Improving Sparsely Annotated Object Detection with
Pseudo-positive Mining [76.95808270536318]
Pseudo- positive mining を用いてラベル付き地域とラベルなし地域を分離するエンド・ツー・エンドシステムを提案する。
ラベル付き領域は通常通り処理されるが、ラベルなし領域の処理には自己教師付き学習が使用される。
我々は,PASCAL-VOCとCOCOデータセットの5つの分割に対して,最先端の性能を達成するための徹底的な実験を行った。
論文 参考訳(メタデータ) (2022-01-12T18:57:04Z) - Weakly Supervised Contrastive Learning [68.47096022526927]
この問題に対処するために,弱教師付きコントラスト学習フレームワーク(WCL)を導入する。
WCLはResNet50を使用して65%と72%のImageNet Top-1の精度を実現している。
論文 参考訳(メタデータ) (2021-10-10T12:03:52Z) - Can contrastive learning avoid shortcut solutions? [88.249082564465]
暗黙的特徴修正(IFM)は、より広い種類の予測的特徴を捉えるために、対照的なモデルを導くために、正と負のサンプルを変更する方法である。
IFMは特徴抑制を低減し、その結果、視覚および医用画像タスクのパフォーマンスが向上する。
論文 参考訳(メタデータ) (2021-06-21T16:22:43Z) - Contrastive Learning with Hard Negative Samples [80.12117639845678]
我々は, 厳密な陰性サンプルを選択するために, 教師なしサンプリング手法を新たに開発する。
このサンプリングの制限ケースは、各クラスをしっかりとクラスタ化し、可能な限り異なるクラスを遠くにプッシュする表現をもたらす。
提案手法は、複数のモードをまたいだダウンストリーム性能を改善し、実装するコード行数が少なく、計算オーバーヘッドを伴わない。
論文 参考訳(メタデータ) (2020-10-09T14:18:53Z) - One-bit Supervision for Image Classification [121.87598671087494]
1ビットの監視は、不完全なアノテーションから学ぶための新しい設定である。
負ラベル抑圧を既成の半教師付き学習アルゴリズムに組み込んだ多段階学習パラダイムを提案する。
論文 参考訳(メタデータ) (2020-09-14T03:06:23Z) - SCE: Scalable Network Embedding from Sparsest Cut [20.08464038805681]
大規模ネットワーク埋め込みは、教師なしの方法で各ノードの潜在表現を学習することである。
このような対照的な学習手法の成功の鍵は、正と負のサンプルを引き出す方法である。
本稿では, 負のサンプルのみを用いた教師なしネットワーク埋め込みのためのSCEを提案する。
論文 参考訳(メタデータ) (2020-06-30T03:18:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。