論文の概要: Mitigating Downstream Model Risks via Model Provenance
- arxiv url: http://arxiv.org/abs/2410.02230v1
- Date: Thu, 3 Oct 2024 05:52:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 07:55:57.255174
- Title: Mitigating Downstream Model Risks via Model Provenance
- Title(参考訳): モデル前兆による下流モデルリスクの軽減
- Authors: Keyu Wang, Abdullah Norozi Iranzad, Scott Schaffter, Doina Precup, Jonathan Lebensold,
- Abstract要約: モデルレコードの作成を簡単にするための機械可読モデル仕様フォーマットを提案する。
私たちのソリューションは、アップストリームモデルとダウンストリームモデルの関係を明確にトレースし、透明性とトレーサビリティを向上します。
この概念実証の目的は、基礎モデルを管理するための新しい標準を設定し、イノベーションと責任あるモデル管理のギャップを埋めることである。
- 参考スコア(独自算出の注目度): 30.083382916838623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research and industry are rapidly advancing the innovation and adoption of foundation model-based systems, yet the tools for managing these models have not kept pace. Understanding the provenance and lineage of models is critical for researchers, industry, regulators, and public trust. While model cards and system cards were designed to provide transparency, they fall short in key areas: tracing model genealogy, enabling machine readability, offering reliable centralized management systems, and fostering consistent creation incentives. This challenge mirrors issues in software supply chain security, but AI/ML remains at an earlier stage of maturity. Addressing these gaps requires industry-standard tooling that can be adopted by foundation model publishers, open-source model innovators, and major distribution platforms. We propose a machine-readable model specification format to simplify the creation of model records, thereby reducing error-prone human effort, notably when a new model inherits most of its design from a foundation model. Our solution explicitly traces relationships between upstream and downstream models, enhancing transparency and traceability across the model lifecycle. To facilitate the adoption, we introduce the unified model record (UMR) repository , a semantically versioned system that automates the publication of model records to multiple formats (PDF, HTML, LaTeX) and provides a hosted web interface (https://modelrecord.com/). This proof of concept aims to set a new standard for managing foundation models, bridging the gap between innovation and responsible model management.
- Abstract(参考訳): 研究と産業は、ファンデーションモデルベースのシステムの革新と導入を急速に進めていますが、これらのモデルを管理するためのツールは、ペースを保っていません。
モデルの起源と系統を理解することは、研究者、業界、規制当局、そして公共の信頼にとって重要である。
モデルカードとシステムカードは透明性を提供するように設計されているが、モデル系譜のトレース、マシン可読性の実現、信頼性の高い集中管理システムの提供、一貫性のある作成インセンティブの育成など、重要な領域では不足している。
この課題はソフトウェアサプライチェーンのセキュリティの問題を反映しているが、AI/MLは成熟の初期段階にある。
これらのギャップに対処するには、ファンデーションモデルパブリッシャ、オープンソースモデルイノベーター、および主要な配布プラットフォームに採用可能な、業界標準のツールが必要である。
モデルレコードの作成を簡略化し,特に新しいモデルが基礎モデルから設計の大部分を継承する場合に,エラーが発生しやすい人的労力を削減するために,機械可読モデル仕様フォーマットを提案する。
私たちのソリューションは、上流モデルと下流モデルの間の関係を明示的にトレースし、モデルのライフサイクルにおける透明性とトレーサビリティを向上します。
モデルレコードの複数のフォーマット(PDF, HTML, LaTeX)への公開を自動化し,ホストされたWebインターフェース(https://modelrecord.com/)を提供するセマンティックバージョニングシステムであるUMRレポジトリを導入する。
この概念実証の目的は、基礎モデルを管理するための新しい標準を設定し、イノベーションと責任あるモデル管理のギャップを埋めることである。
関連論文リスト
- CAR: Controllable Autoregressive Modeling for Visual Generation [100.33455832783416]
Controllable AutoRegressive Modeling (CAR)は、条件制御をマルチスケールの潜在変数モデリングに統合する新しいプラグイン・アンド・プレイフレームワークである。
CARは、制御表現を徐々に洗練し、キャプチャし、前訓練されたモデルの各自己回帰ステップに注入して生成プロセスを導く。
提案手法は,様々な条件にまたがって優れた制御性を示し,従来の手法に比べて画質の向上を実現している。
論文 参考訳(メタデータ) (2024-10-07T00:55:42Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Model Callers for Transforming Predictive and Generative AI Applications [2.7195102129095003]
モデル呼び出し(model caller)と呼ばれる新しいソフトウェア抽象化を導入する。
モデル呼び出しは、AIとMLモデル呼び出しの仲介役として機能する。
我々は、モデル呼び出しのためのPythonライブラリのプロトタイプをリリースした。
論文 参考訳(メタデータ) (2024-04-17T12:21:06Z) - Have You Merged My Model? On The Robustness of Large Language Model IP Protection Methods Against Model Merging [25.327483618051378]
モデル統合シナリオにおけるIP保護手法の堅牢性に関する最初の研究を行う。
実験結果から,現在のLarge Language Model (LLM) の透かし技術は統合されたモデルでは生き残れないことが示唆された。
本研究の目的は,モデルIP保護手法の堅牢性評価において,モデルマージが不可欠であることを示すことである。
論文 参考訳(メタデータ) (2024-04-08T04:30:33Z) - Towards Scalable and Robust Model Versioning [30.249607205048125]
ディープラーニングモデルへのアクセスを目的とした悪意ある侵入が増えている。
異なる攻撃特性を持つモデルの複数バージョンを生成する方法を示す。
モデル学習データにパラメータ化された隠れ分布を組み込むことでこれを実現できることを示す。
論文 参考訳(メタデータ) (2024-01-17T19:55:49Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
ドメイン認識のレベルが異なる制御指向パラメトリックモデルを提案する。
データ駆動型ブラックボックスとAUVダイナミクスのグレイボックス表現を構築するために、普遍微分方程式を用いる。
論文 参考訳(メタデータ) (2022-08-15T17:01:14Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow [14.422129911404472]
Bellmanはこのギャップを埋めることを目指しており、モデルベースのRLツールボックスを初めて完全に設計し、テストした。
我々のモジュラーアプローチは、幅広い環境モデルと、最先端アルゴリズムを復元する汎用モデルベースのエージェントクラスを組み合わせることができる。
論文 参考訳(メタデータ) (2021-03-26T11:32:27Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
現在のアプリケーションで有用なモデルを見つけるための2段階のフレームワークを提案する。
アップロードフェーズでは、モデルがプールにアップロードされている場合、モデルの仕様としてカーネル平均埋め込み(RKME)を縮小する。
デプロイフェーズでは、RKME仕様の値に基づいて、現在のタスクと事前訓練されたモデルの関連性を測定する。
論文 参考訳(メタデータ) (2020-01-20T15:15:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。