Mitigating Downstream Model Risks via Model Provenance
- URL: http://arxiv.org/abs/2410.02230v1
- Date: Thu, 3 Oct 2024 05:52:15 GMT
- Title: Mitigating Downstream Model Risks via Model Provenance
- Authors: Keyu Wang, Abdullah Norozi Iranzad, Scott Schaffter, Doina Precup, Jonathan Lebensold,
- Abstract summary: We propose a machine-readable model specification format to simplify the creation of model records.
Our solution explicitly traces relationships between upstream and downstream models, enhancing transparency and traceability.
This proof of concept aims to set a new standard for managing foundation models, bridging the gap between innovation and responsible model management.
- Score: 30.083382916838623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research and industry are rapidly advancing the innovation and adoption of foundation model-based systems, yet the tools for managing these models have not kept pace. Understanding the provenance and lineage of models is critical for researchers, industry, regulators, and public trust. While model cards and system cards were designed to provide transparency, they fall short in key areas: tracing model genealogy, enabling machine readability, offering reliable centralized management systems, and fostering consistent creation incentives. This challenge mirrors issues in software supply chain security, but AI/ML remains at an earlier stage of maturity. Addressing these gaps requires industry-standard tooling that can be adopted by foundation model publishers, open-source model innovators, and major distribution platforms. We propose a machine-readable model specification format to simplify the creation of model records, thereby reducing error-prone human effort, notably when a new model inherits most of its design from a foundation model. Our solution explicitly traces relationships between upstream and downstream models, enhancing transparency and traceability across the model lifecycle. To facilitate the adoption, we introduce the unified model record (UMR) repository , a semantically versioned system that automates the publication of model records to multiple formats (PDF, HTML, LaTeX) and provides a hosted web interface (https://modelrecord.com/). This proof of concept aims to set a new standard for managing foundation models, bridging the gap between innovation and responsible model management.
Related papers
- CAR: Controllable Autoregressive Modeling for Visual Generation [100.33455832783416]
Controllable AutoRegressive Modeling (CAR) is a novel, plug-and-play framework that integrates conditional control into multi-scale latent variable modeling.
CAR progressively refines and captures control representations, which are injected into each autoregressive step of the pre-trained model to guide the generation process.
Our approach demonstrates excellent controllability across various types of conditions and delivers higher image quality compared to previous methods.
arXiv Detail & Related papers (2024-10-07T00:55:42Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Model Callers for Transforming Predictive and Generative AI Applications [2.7195102129095003]
We introduce a novel software abstraction termed "model caller"
Model callers act as an intermediary for AI and ML model calling.
We have released a prototype Python library for model callers, accessible for installation via pip or for download from GitHub.
arXiv Detail & Related papers (2024-04-17T12:21:06Z) - Have You Merged My Model? On The Robustness of Large Language Model IP Protection Methods Against Model Merging [25.327483618051378]
We conduct the first study on the robustness of IP protection methods under model merging scenarios.
Experimental results indicate that current Large Language Model (LLM) watermarking techniques cannot survive in the merged models.
Our research aims to highlight that model merging should be an indispensable consideration in the robustness assessment of model IP protection techniques.
arXiv Detail & Related papers (2024-04-08T04:30:33Z) - Towards Scalable and Robust Model Versioning [30.249607205048125]
Malicious incursions aimed at gaining access to deep learning models are on the rise.
We show how to generate multiple versions of a model that possess different attack properties.
We show theoretically that this can be accomplished by incorporating parameterized hidden distributions into the model training data.
arXiv Detail & Related papers (2024-01-17T19:55:49Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
We present control-oriented parametric models with varying levels of domain-awareness.
We employ universal differential equations to construct data-driven blackbox and graybox representations of the AUV dynamics.
arXiv Detail & Related papers (2022-08-15T17:01:14Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow [14.422129911404472]
Bellman aims to fill this gap and introduces the first thoroughly designed and tested model-based RL toolbox.
Our modular approach enables to combine a wide range of environment models with generic model-based agent classes that recover state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-26T11:32:27Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
We present a two-phase framework for finding helpful models for a current application.
In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model.
Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification.
arXiv Detail & Related papers (2020-01-20T15:15:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.