Model Callers for Transforming Predictive and Generative AI Applications
- URL: http://arxiv.org/abs/2406.15377v1
- Date: Wed, 17 Apr 2024 12:21:06 GMT
- Title: Model Callers for Transforming Predictive and Generative AI Applications
- Authors: Mukesh Dalal,
- Abstract summary: We introduce a novel software abstraction termed "model caller"
Model callers act as an intermediary for AI and ML model calling.
We have released a prototype Python library for model callers, accessible for installation via pip or for download from GitHub.
- Score: 2.7195102129095003
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a novel software abstraction termed "model caller," acting as an intermediary for AI and ML model calling, advocating its transformative utility beyond existing model-serving frameworks. This abstraction offers multiple advantages: enhanced accuracy and reduced latency in model predictions, superior monitoring and observability of models, more streamlined AI system architectures, simplified AI development and management processes, and improved collaboration and accountability across AI/ML/Data Science, software, data, and operations teams. Model callers are valuable for both creators and users of models within both predictive and generative AI applications. Additionally, we have developed and released a prototype Python library for model callers, accessible for installation via pip or for download from GitHub.
Related papers
- xLAM: A Family of Large Action Models to Empower AI Agent Systems [111.5719694445345]
We release xLAM, a series of large action models designed for AI agent tasks.
xLAM consistently delivers exceptional performance across multiple agent ability benchmarks.
arXiv Detail & Related papers (2024-09-05T03:22:22Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - ModelGPT: Unleashing LLM's Capabilities for Tailored Model Generation [35.160964210941955]
We propose ModelGPT, a framework designed to determine and generate AI models tailored to the data or task descriptions provided by the user.
Given user requirements, ModelGPT is able to provide tailored models at most 270x faster than the previous paradigms.
arXiv Detail & Related papers (2024-02-18T11:24:34Z) - FlexModel: A Framework for Interpretability of Distributed Large
Language Models [0.0]
We present FlexModel, a software package providing a streamlined interface for engaging with models distributed across multi- GPU and multi-node configurations.
The library is compatible with existing model distribution libraries and encapsulates PyTorch models.
It exposes user-registerable HookFunctions to facilitate straightforward interaction with distributed model internals.
arXiv Detail & Related papers (2023-12-05T21:19:33Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
We introduce Model Share AI (AIMS), an easy-to-use MLOps platform designed to streamline collaborative model development, model provenance tracking, and model deployment.
AIMS features collaborative project spaces and a standardized model evaluation process that ranks model submissions based on their performance on unseen evaluation data.
AIMS allows users to deploy ML models built in Scikit-Learn, Keras, PyTorch, and ONNX into live REST APIs and automatically generated web apps.
arXiv Detail & Related papers (2023-09-27T15:24:39Z) - ModelScope-Agent: Building Your Customizable Agent System with
Open-source Large Language Models [74.64651681052628]
We introduce ModelScope-Agent, a customizable agent framework for real-world applications based on open-source LLMs as controllers.
It provides a user-friendly system library, with customizable engine design to support model training on multiple open-source LLMs.
A comprehensive framework has been proposed spanning over tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation.
arXiv Detail & Related papers (2023-09-02T16:50:30Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
We propose a data-driven approach to enhance models' signal-awareness.
We combine the SE concept of code complexity with the AI technique of curriculum learning.
We achieve up to 4.8x improvement in model signal awareness.
arXiv Detail & Related papers (2021-11-10T17:58:18Z) - A Model-Driven Engineering Approach to Machine Learning and Software
Modeling [0.5156484100374059]
Models are used in both the Software Engineering (SE) and the Artificial Intelligence (AI) communities.
The main focus is on the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS) use cases, where both ML and model-driven SE play a key role.
arXiv Detail & Related papers (2021-07-06T15:50:50Z) - Model-based actor-critic: GAN (model generator) + DRL (actor-critic) =>
AGI [0.0]
We propose adding an (generative/predictive) environment model to the actor-critic (model-free) architecture.
The proposed AI model is similar to (model-free) DDPG and therefore it's called model-based DDPG.
Our initial limited experiments show that DRL and GAN in model-based actor-critic results in an incremental goal-driven intellignce required to solve each task with similar performance to (model-free) DDPG.
arXiv Detail & Related papers (2020-04-04T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.