論文の概要: Theoretical Insights into Fine-Tuning Attention Mechanism: Generalization and Optimization
- arxiv url: http://arxiv.org/abs/2410.02247v2
- Date: Sun, 30 Mar 2025 16:16:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:56.675614
- Title: Theoretical Insights into Fine-Tuning Attention Mechanism: Generalization and Optimization
- Title(参考訳): 微調整注意機構の理論的考察:一般化と最適化
- Authors: Xinhao Yao, Hongjin Qian, Xiaolin Hu, Gengze Xu, Yong Liu, Wei Liu, Jian Luan, Bin Wang,
- Abstract要約: 大規模言語モデルの微調整における注意機構に関連する2つの現象について検討する。
注意行列の不等式」と呼ばれる最初の現象は、微調整された異なる重量行列の影響を浮き彫りにする。
第2の現象である"Attention Matrices with Customized Learning Rates to Better Convergence"は、異なる学習率を割り当てることの重要性を強調している。
- 参考スコア(独自算出の注目度): 27.907707931902547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs), built on Transformer architectures, exhibit remarkable generalization across a wide range of tasks. However, fine-tuning these models for specific tasks remains resource-intensive due to their extensive parameterization. In this paper, we investigate two remarkable phenomena related to the attention mechanism during the fine-tuning of LLMs. The first phenomenon, termed "Unequal Importance of Attention Matrices," highlights the impact of fine-tuning different weight matrices. It shows that optimizing the $\mathbf{W}_v$ matrix yields significantly better performance than optimizing the $\mathbf{W}_k$ matrix. Fine-tuning only the $\mathbf{W}_q$ and $\mathbf{W}_v$ matrices is computationally efficient while delivering results comparable to, or even better than fine-tuning all three matrices ($\mathbf{W}_q$, $\mathbf{W}_k$, and $\mathbf{W}_v$). The second phenomenon, "Attention Matrices with Customized Learning Rate Leads to Better Convergence," emphasizes the importance of assigning distinct learning rates to these matrices. Specifically, a higher learning rate for the $\mathbf{W}_v$ matrix compared to $\mathbf{W}_q$ and $\mathbf{W}_k$ accelerates convergence and improves performance. Building on these insights, we propose a new strategy that improves fine-tuning efficiency in terms of both storage and time. Experimental results on benchmark datasets validate the effectiveness of this approach, supporting our theoretical findings. Our analysis lays the theoretical groundwork for configuring and improving lightweight algorithms in LLMs fine-tuning.
- Abstract(参考訳): トランスフォーマーアーキテクチャ上に構築されたLarge Language Models (LLM) は、幅広いタスクにまたがる顕著な一般化を示す。
しかしながら、これらのモデルを特定のタスクのために微調整することは、その広範なパラメータ化のために資源集約的なままである。
本稿では,LLMの微調整における注意機構に関連する2つの顕著な現象について検討する。
注意行列の不等式」と呼ばれる最初の現象は、微調整された異なる重量行列の影響を浮き彫りにする。
これは、$\mathbf{W}_v$行列を最適化すると、$\mathbf{W}_k$行列を最適化するよりもはるかに優れた性能が得られることを示している。
微細チューニングは、$\mathbf{W}_q$と$\mathbf{W}_v$の3つの行列($\mathbf{W}_q$, $\mathbf{W}_k$, $\mathbf{W}_v$)に匹敵する、あるいはそれ以上の精度で計算的に効率的である。
第2の現象である"Attention Matrices with Customized Learning Rates to Better Convergence"は、これらの行列に異なる学習率を割り当てることの重要性を強調している。
具体的には、$\mathbf{W}_v$行列の学習率を$\mathbf{W}_q$と$\mathbf{W}_k$と比較すると、収束を加速し、性能を向上させる。
これらの知見に基づいて、ストレージと時間の両方の観点から微調整効率を向上させる新しい戦略を提案する。
ベンチマークデータセットによる実験結果から,本手法の有効性が検証され,理論的な結果が得られた。
本分析は,LLMの微調整における軽量アルゴリズムの構成と改良に関する理論的基礎を定式化したものである。
関連論文リスト
- Optimized Inference for 1.58-bit LLMs: A Time and Memory-Efficient Algorithm for Binary and Ternary Matrix Multiplication [8.779871128906787]
大規模言語モデル(LLM)は、高度な計算インフラに依存しながら推論の非効率さに悩まされる。
3次重み付き1.58ビットLLMの推論時間とメモリ効率を改善するアルゴリズムを提案する。
その結果,時間とメモリの両面でのアプローチの優位性が確認され,推論時間は最大29倍,メモリ使用量は最大6倍に短縮された。
論文 参考訳(メタデータ) (2024-11-10T04:56:14Z) - Optimal Quantization for Matrix Multiplication [35.007966885532724]
我々は、近似誤差を明確に保証したネスト格子に基づく普遍的量子化器を構築する。
我々の量子化器の実用的低複雑さバージョンは、非常に最適に近い性能を達成する。
論文 参考訳(メタデータ) (2024-10-17T17:19:48Z) - Compute Better Spent: Replacing Dense Layers with Structured Matrices [77.61728033234233]
画像領域における畳み込みネットワークの成功が示すように、高密度行列に対するより効率的な代替手段を同定する。
異なる構造は、しばしばパフォーマンスに不可欠な、非常に異なる初期化尺度と学習率を必要とする。
本稿では,モナール行列を含む新しい行列族Block-Trainを提案する。
論文 参考訳(メタデータ) (2024-06-10T13:25:43Z) - Conv-Basis: A New Paradigm for Efficient Attention Inference and Gradient Computation in Transformers [16.046186753149]
最近のLarge Language Models(LLM)におけるトランスフォーマーの成功の鍵は自己認識メカニズムである
我々は、注目行列の畳み込み様構造を利用して、畳み込み行列を用いた注目の効率的な近似法を開発する。
トランスフォーマーモデルにおけるアテンション計算を加速するための新しいパラダイムが、より長いコンテキストへのアプリケーションを支援することを願っています。
論文 参考訳(メタデータ) (2024-05-08T17:11:38Z) - Asymmetry in Low-Rank Adapters of Foundation Models [47.310550805920585]
本稿では、低ランクアダプタ行列の重要性において、予期せぬ非対称性を特徴付け、活用する。
我々は、細調整の$B$が、細調整の$A$よりも本質的に効果的であることを示し、ランダムな未トレーニングの$A$は、細調整の$A$よりもほぼ同等に機能することを示します。
論文 参考訳(メタデータ) (2024-02-26T18:59:12Z) - Towards Constituting Mathematical Structures for Learning to Optimize [101.80359461134087]
近年,機械学習を利用してデータから最適化アルゴリズムを自動学習する技術が注目されている。
ジェネリックL2Oアプローチは反復更新ルールをパラメータ化し、ブラックボックスネットワークとして更新方向を学ぶ。
一般的なアプローチは広く適用できるが、学習されたモデルは過度に適合し、配布外テストセットにうまく一般化できない。
本稿では, 分布外問題に対して広く適用でき, 一般化された, 数学に着想を得た構造を持つ新しいL2Oモデルを提案する。
論文 参考訳(メタデータ) (2023-05-29T19:37:28Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Monarch: Expressive Structured Matrices for Efficient and Accurate
Training [64.6871423399431]
大規模なニューラルネットワークは多くのドメインで優れているが、トレーニングや微調整は高価である。
計算やメモリ要件を減らすための一般的なアプローチは、重み付け行列を構造化行列に置き換えることである。
ハードウェア効率のよい行列(Monarch)のクラスを提案する。
論文 参考訳(メタデータ) (2022-04-01T17:37:29Z) - Towards Designing Optimal Sensing Matrices for Generalized Linear
Inverse Problems [26.251298081065304]
逆問題 $mathbfy= f(mathbfAx)$ を考える。
スパイカースペクトルが回復性能を損なうか助かるかは、$f$に依存する。
論文 参考訳(メタデータ) (2021-11-05T03:18:50Z) - Generalization Properties of Stochastic Optimizers via Trajectory
Analysis [48.38493838310503]
本稿では,Fernique-Talagrand関数と局所パワーローの両方が一般化性能の予測可能であることを示す。
本稿では,Fernique-Talagrand関数と局所パワーローの両方が一般化性能の予測可能であることを示す。
論文 参考訳(メタデータ) (2021-08-02T10:58:32Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
非PSDおよび2乗根行列の次元削減法を提案する。
複数のダウンストリームタスクにこれらのテクニックをどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-06-16T04:07:48Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
人口ベースのブラックボックス一般化を推論するメタラーニングの利用を提案する。
メタロス関数は,学習アルゴリズムが検索動作を変更することを促進し,新たなコンテキストに容易に適合できることを示す。
論文 参考訳(メタデータ) (2021-03-05T08:13:25Z) - On the Efficient Implementation of the Matrix Exponentiated Gradient
Algorithm for Low-Rank Matrix Optimization [26.858608065417663]
スペクトル上の凸最適化は、機械学習、信号処理、統計学に重要な応用がある。
低ランク行列による最適化に適したMEGの効率的な実装を提案し、各イテレーションで単一の低ランクSVDのみを使用する。
また,本手法の正しい収束のための効率よく計算可能な証明書も提供する。
論文 参考訳(メタデータ) (2020-12-18T19:14:51Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Large Dimensional Analysis and Improvement of Multi Task Learning [38.86699890656948]
マルチタスク学習(MTL)は、複数の関連するタスクに含まれる有用な情報を利用して、全てのタスクの一般化性能を向上させる。
本稿では,MLLのLast Square Support Vector Machine (LSSVM) バージョンについて,簡単な解析を行うが,注意深い調整を行うと極めて強力である。
論文 参考訳(メタデータ) (2020-09-03T11:40:14Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
直交群 $O(d)$ 上の幾何駆動最適化アルゴリズムの新しいクラスを示す。
提案手法は,深層,畳み込み,反復的なニューラルネットワーク,強化学習,フロー,メトリック学習など,機械学習のさまざまな分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-30T15:37:50Z) - Supervised Quantile Normalization for Low-rank Matrix Approximation [50.445371939523305]
我々は、$X$ の値と $UV$ の値を行ワイズで操作できる量子正規化演算子のパラメータを学習し、$X$ の低ランク表現の質を改善する。
本稿では,これらの手法が合成およびゲノムデータセットに適用可能であることを実証する。
論文 参考訳(メタデータ) (2020-02-08T21:06:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。