論文の概要: Make Compound Sentences Simple to Analyze: Learning to Split Sentences for Aspect-based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2410.02297v1
- Date: Thu, 3 Oct 2024 08:27:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 04:12:15.157817
- Title: Make Compound Sentences Simple to Analyze: Learning to Split Sentences for Aspect-based Sentiment Analysis
- Title(参考訳): 複合文を解析しやすくする: アスペクトに基づく知覚分析のための文分割学習
- Authors: Yongsik Seo, Sungwon Song, Ryang Heo, Jieyong Kim, Dongha Lee,
- Abstract要約: Aspect Term Oriented Sentence Splitter (ATOSS) を提案する。
プラグアンドプレイモジュールとして,ABSAモデルのパラメータを保持するとともに,入力文中の本質的な意図を識別しやすくする。
- 参考スコア(独自算出の注目度): 9.614424658292277
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the domain of Aspect-Based Sentiment Analysis (ABSA), generative methods have shown promising results and achieved substantial advancements. However, despite these advancements, the tasks of extracting sentiment quadruplets, which capture the nuanced sentiment expressions within a sentence, remain significant challenges. In particular, compound sentences can potentially contain multiple quadruplets, making the extraction task increasingly difficult as sentence complexity grows. To address this issue, we are focusing on simplifying sentence structures to facilitate the easier recognition of these elements and crafting a model that integrates seamlessly with various ABSA tasks. In this paper, we propose Aspect Term Oriented Sentence Splitter (ATOSS), which simplifies compound sentence into simpler and clearer forms, thereby clarifying their structure and intent. As a plug-and-play module, this approach retains the parameters of the ABSA model while making it easier to identify essential intent within input sentences. Extensive experimental results show that utilizing ATOSS outperforms existing methods in both ASQP and ACOS tasks, which are the primary tasks for extracting sentiment quadruplets.
- Abstract(参考訳): Aspect-Based Sentiment Analysis (ABSA)の分野では、生成法は有望な結果を示し、実質的な進歩を遂げている。
しかし、これらの進歩にもかかわらず、文中のニュアンスされた感情表現をキャプチャする感情四重項を抽出する作業は、依然として重大な課題である。
特に、複合文は複数の四重項を含む可能性があるため、文の複雑さが増大するにつれて、抽出作業がますます困難になる。
この問題に対処するため、これらの要素の認識を容易にするために文構造を簡素化し、様々なABSAタスクとシームレスに統合するモデルを構築することに重点を置いている。
本稿では、複合文をよりシンプルで明確な形式に単純化し、その構造と意図を明確にするアスペクト・ターム・オリエント・センテンス・スプリッター(ATOSS)を提案する。
プラグアンドプレイモジュールとして,ABSAモデルのパラメータを保持するとともに,入力文中の本質的な意図を識別しやすくする。
ATOSSの利用は、感情四重項抽出の主課題であるASQPタスクとACOSタスクの両方において、既存の手法よりも優れていた。
関連論文リスト
- It is Simple Sometimes: A Study On Improving Aspect-Based Sentiment Analysis Performance [3.951769809066429]
タスク記述にNLP関連タスクプレフィックスを付加することにより、命令学習パラダイムの拡張であるPFInstructを提案する。
この単純なアプローチは全てのテストされたSemEvalサブタスクのパフォーマンスを改善し、ATEサブタスク(Rest14)の以前の状態(SOTA)を+3.28 F1スコア、AOOEサブタスクの平均+5.43 F1スコアで上回った。
論文 参考訳(メタデータ) (2024-05-31T08:57:09Z) - Exploiting Adaptive Contextual Masking for Aspect-Based Sentiment
Analysis [0.6827423171182154]
アスペクトベース知覚分析(Aspect-Based Sentiment Analysis、ABSA)は、与えられたテキストから多面的側面、意見、感情を抽出する問題である。
本稿では,ABSAのアスペクト・ターム抽出・アスペクト・センティメント・サブタスクを支援するために,コンテキストに基づく無関係なトークンを除去する適応マスキング手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T11:33:09Z) - iACOS: Advancing Implicit Sentiment Extraction with Informative and Adaptive Negative Examples [2.0249250133493195]
そこで本稿では,カテゴリとオピニオンをセンチメントで抽出する新しい手法iACOSを提案する。
iACOSはテキストの最後に2つの暗黙のトークンを付加し、暗黙のアスペクトや意見を含むすべてのトークンのコンテキスト認識表現をキャプチャする。
2つの公開ベンチマークデータセットのF1スコアにより,iACOSは,他の4倍の抽出基準値よりも有意に優れていた。
論文 参考訳(メタデータ) (2023-11-07T11:19:06Z) - BERM: Training the Balanced and Extractable Representation for Matching
to Improve Generalization Ability of Dense Retrieval [54.66399120084227]
本稿では,BERMと呼ばれるマッチング信号の取得により,高密度検索の一般化を改善する手法を提案する。
センス検索は、ドメイン内のラベル付きデータセットでトレーニングされた場合、第1段階の検索プロセスにおいて有望であることが示されている。
論文 参考訳(メタデータ) (2023-05-18T15:43:09Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
生成的アプローチは、テキストから(1つ以上の)4つの要素を1つのタスクとして抽出するために提案されている。
本稿では,ABSAを解くための統一的なフレームワークと,それに関連するサブタスクを提案する。
論文 参考訳(メタデータ) (2022-10-12T23:38:57Z) - Aspect Sentiment Quad Prediction as Paraphrase Generation [53.33072918744124]
Aspect Sentiment Quad Prediction (ASQP)タスクを導入し、与えられた意見文に対するクワッド内のすべての感情要素を共同で検出することを目的とした。
本稿では,ASQP タスクをパラフレーズ生成プロセスにキャストする新しいtextscParaphrase モデリングパラダイムを提案する。
一方、感情要素のセマンティクスは、自然言語形式でそれらを生成する学習によって完全に活用することができる。
論文 参考訳(メタデータ) (2021-10-02T12:57:27Z) - A Unified Generative Framework for Aspect-Based Sentiment Analysis [33.911655982545206]
Aspect-based Sentiment Analysis (ABSA) は、アスペクトの項、対応する感情の極性、意見の項を識別することを目的としている。
ABSAには7つのサブタスクがある。
本稿では,各サブタスク対象を,ポインタインデックスと感情クラスインデックスで混合したシーケンスとして再定義する。
トレーニング前のシーケンス・ツー・シーケンス・モデルであるBARTを用いて、エンド・ツー・エンドのフレームワークで全てのABSAサブタスクを解決する。
論文 参考訳(メタデータ) (2021-06-08T12:55:22Z) - Narrative Incoherence Detection [76.43894977558811]
本稿では,文間セマンティック理解のための新たなアリーナとして,物語不整合検出の課題を提案する。
複数文の物語を考えると、物語の流れに意味的な矛盾があるかどうかを決定します。
論文 参考訳(メタデータ) (2020-12-21T07:18:08Z) - Extractive Summarization as Text Matching [123.09816729675838]
本稿では,ニューラル抽出要約システムの構築方法に関するパラダイムシフトを作成する。
抽出した要約タスクを意味テキストマッチング問題として定式化する。
我々はCNN/DailyMailの最先端抽出結果を新しいレベル(ROUGE-1の44.41)に推し進めた。
論文 参考訳(メタデータ) (2020-04-19T08:27:57Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。