論文の概要: A Hybrid Multi-Agent Prompting Approach for Simplifying Complex Sentences
- arxiv url: http://arxiv.org/abs/2506.11681v2
- Date: Tue, 17 Jun 2025 15:59:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 13:08:30.099335
- Title: A Hybrid Multi-Agent Prompting Approach for Simplifying Complex Sentences
- Title(参考訳): 複合文の簡易化のためのハイブリッドマルチエージェント・プロンプト手法
- Authors: Pratibha Zunjare, Michael Hsiao,
- Abstract要約: 本稿では,高度プロンプトとマルチエージェントアーキテクチャを組み合わせるハイブリッド手法を提案する。
実験結果から,本手法はゲームデザインアプリケーションで書かれた複雑な文の70%を単純化することができた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenge of transforming complex sentences into sequences of logical, simplified sentences while preserving semantic and logical integrity with the help of Large Language Models. We propose a hybrid approach that combines advanced prompting with multi-agent architectures to enhance the sentence simplification process. Experimental results show that our approach was able to successfully simplify 70% of the complex sentences written for video game design application. In comparison, a single-agent approach attained a 48% success rate on the same task.
- Abstract(参考訳): 本稿では, 複雑な文を論理的, 単純化された文列に変換する上で, 意味論的・論理的整合性を維持しながら, 大規模言語モデルの助けを借りることの課題に対処する。
本稿では,高度プロンプトとマルチエージェントアーキテクチャを組み合わせるハイブリッド手法を提案する。
実験結果から,本手法はゲームデザインアプリケーションで書かれた複雑な文の70%を単純化することができた。
対照的に、シングルエージェントアプローチは同じタスクで48%の成功率を達成した。
関連論文リスト
- Multi-LLM Collaborative Search for Complex Problem Solving [54.194370845153784]
そこで我々は,Mixture-of-Search-Agents(MoSA)パラダイムを提案する。
MoSAは、独立した探索とLCM間の反復的精錬を組み合わせることで、様々な推論経路を統合する。
モンテカルロ木探索(MCTS)をバックボーンとして使用することにより、複数のエージェントが推論ステップを提案して集約することが可能となり、精度が向上する。
論文 参考訳(メタデータ) (2025-02-26T06:31:04Z) - Progressive Document-level Text Simplification via Large Language Models [19.57555397986868]
長い文書レベルの単純化(DS)はいまだに未調査である。
本稿では,タスクを階層的に分解してプログレッシブ単純化手法(ProgDS)を提案する。
論文 参考訳(メタデータ) (2025-01-07T15:14:37Z) - Refining Answer Distributions for Improved Large Language Model Reasoning [24.67507932821155]
本稿では,Large Language Models (LLMs) の推論能力を高めるための,新しいアルゴリズムフレームワークであるRefined Answer Distributionsを提案する。
我々のアプローチは、モンテカルロ近似(英語版)を形成するための反復的なサンプリング戦略と見なすことができる。
論文 参考訳(メタデータ) (2024-12-17T19:45:53Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
本稿では,この問題を緩和するために,SSCL(Self-Contrastive Learning)というシンプルな手法を提案する。
提案手法は非常に単純で,様々な最先端モデルに拡張して,性能向上を図ることができる。
論文 参考訳(メタデータ) (2023-05-09T11:00:02Z) - Sentence Simplification via Large Language Models [15.07021692249856]
文の単純化は、複雑な文を本来の意味を保ちながら、より単純な文に言い換えることを目的としている。
大規模言語モデル(LLM)は、様々な自然言語処理タスクを実行する能力を示した。
論文 参考訳(メタデータ) (2023-02-23T12:11:58Z) - Lexical Complexity Controlled Sentence Generation [6.298911438929862]
語彙複雑性制御文生成の新しいタスクを提案する。
学級の読み書き、言語教育、取得などの分野では大きな可能性を秘めている。
本稿では,複雑性の埋め込みに基づく,単純かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-26T11:03:56Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
大規模言語モデルに対して,多段階推論を行うための課題について検討する。
中心的な疑問は、どの推論例が最も効果的なプロンプトを作るかである。
多段階推論のためのシンプルで効果的な例選択方式である複雑性ベースのプロンプトを提案する。
論文 参考訳(メタデータ) (2022-10-03T05:33:27Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
明示的な編集動作によって最小レベンシュテイン距離(MLD)を最適化する強化反復シーケンス編集(RISE)フレームワークを導入する。
RISEは会話の特徴に関連するトークンに注意を払うことができる。
2つのベンチマークデータセットの実験結果から、RISEは最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-30T08:44:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。